ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.07420
  4. Cited By
A Graph Autoencoder Approach to Causal Structure Learning

A Graph Autoencoder Approach to Causal Structure Learning

18 November 2019
Ignavier Ng
Shengyu Zhu
Zhitang Chen
Zhuangyan Fang
    BDL
    CML
ArXivPDFHTML

Papers citing "A Graph Autoencoder Approach to Causal Structure Learning"

14 / 14 papers shown
Title
Recovering Linear Causal Models with Latent Variables via Cholesky
  Factorization of Covariance Matrix
Recovering Linear Causal Models with Latent Variables via Cholesky Factorization of Covariance Matrix
Yunfeng Cai
Xu Li
Ming Sun
Ping Li
CML
32
1
0
01 Nov 2023
A Survey on Causal Discovery Methods for I.I.D. and Time Series Data
A Survey on Causal Discovery Methods for I.I.D. and Time Series Data
Uzma Hasan
Emam Hossain
Md. Osman Gani
CML
AI4TS
37
24
0
27 Mar 2023
Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting
Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting
An Zhang
Fang Liu
Wenchang Ma
Zhibo Cai
Xiang Wang
Tat-Seng Chua
CML
42
5
0
06 Mar 2023
Directed Acyclic Graphs With Tears
Directed Acyclic Graphs With Tears
Zhichao Chen
Zhiqiang Ge
CML
33
5
0
04 Feb 2023
On Root Cause Localization and Anomaly Mitigation through Causal
  Inference
On Root Cause Localization and Anomaly Mitigation through Causal Inference
Xiao Han
Lu Zhang
Yongkai Wu
Shuhan Yuan
28
7
0
08 Dec 2022
Deep Causal Learning: Representation, Discovery and Inference
Deep Causal Learning: Representation, Discovery and Inference
Zizhen Deng
Xiaolong Zheng
Hu Tian
D. Zeng
CML
BDL
38
11
0
07 Nov 2022
gCastle: A Python Toolbox for Causal Discovery
gCastle: A Python Toolbox for Causal Discovery
Keli Zhang
Shengyu Zhu
Marcus Kalander
Ignavier Ng
Junjian Ye
Zhitang Chen
Lujia Pan
CML
34
60
0
30 Nov 2021
Towards Federated Bayesian Network Structure Learning with Continuous
  Optimization
Towards Federated Bayesian Network Structure Learning with Continuous Optimization
Ignavier Ng
Kun Zhang
FedML
47
38
0
18 Oct 2021
Scalable Causal Structure Learning: Scoping Review of Traditional and
  Deep Learning Algorithms and New Opportunities in Biomedicine
Scalable Causal Structure Learning: Scoping Review of Traditional and Deep Learning Algorithms and New Opportunities in Biomedicine
Pulakesh Upadhyaya
Kai Zhang
Can Li
Xiaoqian Jiang
Yejin Kim
CML
35
7
0
15 Oct 2021
Learning Neural Causal Models with Active Interventions
Learning Neural Causal Models with Active Interventions
Nino Scherrer
O. Bilaniuk
Yashas Annadani
Anirudh Goyal
Patrick Schwab
Bernhard Schölkopf
Michael C. Mozer
Yoshua Bengio
Stefan Bauer
Nan Rosemary Ke
CML
48
42
0
06 Sep 2021
Ordering-Based Causal Discovery with Reinforcement Learning
Ordering-Based Causal Discovery with Reinforcement Learning
Xiaoqiang Wang
Yali Du
Shengyu Zhu
Liangjun Ke
Zhitang Chen
Jianye Hao
Jun Wang
CML
29
63
0
14 May 2021
D'ya like DAGs? A Survey on Structure Learning and Causal Discovery
D'ya like DAGs? A Survey on Structure Learning and Causal Discovery
M. Vowels
Necati Cihan Camgöz
Richard Bowden
CML
43
297
0
03 Mar 2021
CausalVAE: Structured Causal Disentanglement in Variational Autoencoder
CausalVAE: Structured Causal Disentanglement in Variational Autoencoder
Mengyue Yang
Furui Liu
Zhitang Chen
Xinwei Shen
Jianye Hao
Jun Wang
OOD
CoGe
CML
41
44
0
18 Apr 2020
Causal Inference and Causal Explanation with Background Knowledge
Causal Inference and Causal Explanation with Background Knowledge
Christopher Meek
CML
224
628
0
20 Feb 2013
1