ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.07532
  4. Cited By
Graph Neural Ordinary Differential Equations

Graph Neural Ordinary Differential Equations

18 November 2019
Michael Poli
Stefano Massaroli
Junyoung Park
Atsushi Yamashita
Hajime Asama
Jinkyoo Park
    AI4CE
ArXivPDFHTML

Papers citing "Graph Neural Ordinary Differential Equations"

50 / 109 papers shown
Title
Inferring dynamic regulatory interaction graphs from time series data
  with perturbations
Inferring dynamic regulatory interaction graphs from time series data with perturbations
Dhananjay Bhaskar
Sumner Magruder
E. Brouwer
Aarthi Venkat
Frederik Wenkel
Guy Wolf
Smita Krishnaswamy
17
3
0
13 Jun 2023
Learning the effective order of a hypergraph dynamical system
Learning the effective order of a hypergraph dynamical system
Leonie Neuhäuser
Michael Scholkemper
Francesco Tudisco
Michael T. Schaub
11
9
0
02 Jun 2023
Reversible and irreversible bracket-based dynamics for deep graph neural
  networks
Reversible and irreversible bracket-based dynamics for deep graph neural networks
A. Gruber
Kookjin Lee
N. Trask
AI4CE
25
9
0
24 May 2023
Newton-Cotes Graph Neural Networks: On the Time Evolution of Dynamic
  Systems
Newton-Cotes Graph Neural Networks: On the Time Evolution of Dynamic Systems
Lingbing Guo
Wei-Qun Wang
Zhuo Chen
Ningyu Zhang
Zequn Sun
Yixuan Lai
Qiang Zhang
Huajun Chen
14
5
0
24 May 2023
A Fractional Graph Laplacian Approach to Oversmoothing
A Fractional Graph Laplacian Approach to Oversmoothing
Sohir Maskey
Raffaele Paolino
Aras Bacho
Gitta Kutyniok
22
29
0
22 May 2023
Hawkes Process Based on Controlled Differential Equations
Hawkes Process Based on Controlled Differential Equations
Minju Jo
Seung-Uk Kook
Noseong Park
AI4TS
31
1
0
09 May 2023
GNN-based physics solver for time-independent PDEs
GNN-based physics solver for time-independent PDEs
R. J. Gladstone
H. Rahmani
V. Suryakumar
Hadi Meidani
M. DÉlia
A. Zareei
AI4CE
20
15
0
28 Mar 2023
A Survey on Oversmoothing in Graph Neural Networks
A Survey on Oversmoothing in Graph Neural Networks
T. Konstantin Rusch
Michael M. Bronstein
Siddhartha Mishra
16
184
0
20 Mar 2023
Effectively Modeling Time Series with Simple Discrete State Spaces
Effectively Modeling Time Series with Simple Discrete State Spaces
Michael Zhang
Khaled Kamal Saab
Michael Poli
Tri Dao
Karan Goel
Christopher Ré
AI4TS
22
44
0
16 Mar 2023
Framelet Message Passing
Framelet Message Passing
Xinliang Liu
Bingxin Zhou
Chutian Zhang
Yu Guang Wang
21
5
0
28 Feb 2023
Modulated Neural ODEs
Modulated Neural ODEs
I. Auzina
Çağatay Yıldız
Sara Magliacane
Matthias Bethge
E. Gavves
20
5
0
26 Feb 2023
Multiscale Graph Neural Network Autoencoders for Interpretable
  Scientific Machine Learning
Multiscale Graph Neural Network Autoencoders for Interpretable Scientific Machine Learning
Shivam Barwey
Varun Shankar
V. Viswanathan
R. Maulik
AI4CE
25
20
0
13 Feb 2023
TIDE: Time Derivative Diffusion for Deep Learning on Graphs
TIDE: Time Derivative Diffusion for Deep Learning on Graphs
M. Behmanesh
Maximilian Krahn
M. Ovsjanikov
DiffM
GNN
19
9
0
05 Dec 2022
GREAD: Graph Neural Reaction-Diffusion Networks
GREAD: Graph Neural Reaction-Diffusion Networks
Jeongwhan Choi
Seoyoung Hong
Noseong Park
Sung-Bae Cho
DiffM
GNN
19
26
0
25 Nov 2022
Learning Modular Simulations for Homogeneous Systems
Learning Modular Simulations for Homogeneous Systems
Jayesh K. Gupta
Sai H. Vemprala
Ashish Kapoor
9
6
0
28 Oct 2022
torchode: A Parallel ODE Solver for PyTorch
torchode: A Parallel ODE Solver for PyTorch
Marten Lienen
Stephan Günnemann
LRM
19
11
0
22 Oct 2022
Anti-Symmetric DGN: a stable architecture for Deep Graph Networks
Anti-Symmetric DGN: a stable architecture for Deep Graph Networks
Alessio Gravina
D. Bacciu
Claudio Gallicchio
GNN
14
50
0
18 Oct 2022
Modular Flows: Differential Molecular Generation
Modular Flows: Differential Molecular Generation
Yogesh Verma
Samuel Kaski
Markus Heinonen
Vikas K. Garg
23
14
0
12 Oct 2022
Generalized energy and gradient flow via graph framelets
Generalized energy and gradient flow via graph framelets
Andi Han
Dai Shi
Zhiqi Shao
Junbin Gao
70
13
0
08 Oct 2022
Gradient Gating for Deep Multi-Rate Learning on Graphs
Gradient Gating for Deep Multi-Rate Learning on Graphs
T. Konstantin Rusch
B. Chamberlain
Michael W. Mahoney
Michael M. Bronstein
Siddhartha Mishra
74
53
0
02 Oct 2022
Vectorized Adjoint Sensitivity Method for Graph Convolutional Neural
  Ordinary Differential Equations
Vectorized Adjoint Sensitivity Method for Graph Convolutional Neural Ordinary Differential Equations
Jack Cai
11
0
0
14 Sep 2022
EgPDE-Net: Building Continuous Neural Networks for Time Series
  Prediction with Exogenous Variables
EgPDE-Net: Building Continuous Neural Networks for Time Series Prediction with Exogenous Variables
Penglei Gao
Xi Yang
Rui Zhang
Ping Guo
John Y. Goulermas
Kaizhu Huang
AI4TS
13
4
0
03 Aug 2022
Structural Inference of Networked Dynamical Systems with Universal
  Differential Equations
Structural Inference of Networked Dynamical Systems with Universal Differential Equations
James Koch
Zhao Chen
Aaron Tuor
Ján Drgoňa
D. Vrabie
PINN
24
10
0
11 Jul 2022
Challenges and Opportunities in Deep Reinforcement Learning with Graph
  Neural Networks: A Comprehensive review of Algorithms and Applications
Challenges and Opportunities in Deep Reinforcement Learning with Graph Neural Networks: A Comprehensive review of Algorithms and Applications
Sai Munikoti
D. Agarwal
L. Das
M. Halappanavar
Balasubramaniam Natarajan
GNN
OffRL
AI4CE
27
57
0
16 Jun 2022
ACMP: Allen-Cahn Message Passing for Graph Neural Networks with Particle
  Phase Transition
ACMP: Allen-Cahn Message Passing for Graph Neural Networks with Particle Phase Transition
Yuelin Wang
Kai Yi
Xinliang Liu
Yu Guang Wang
Shi Jin
13
33
0
11 Jun 2022
Continuous Temporal Graph Networks for Event-Based Graph Data
Continuous Temporal Graph Networks for Event-Based Graph Data
Jin Guo
Zhen Han
Zhou Su
Jiliang Li
Volker Tresp
Yuyi Wang
AI4CE
10
5
0
31 May 2022
Learning Interacting Dynamical Systems with Latent Gaussian Process ODEs
Learning Interacting Dynamical Systems with Latent Gaussian Process ODEs
Çağatay Yıldız
M. Kandemir
Barbara Rakitsch
46
10
0
24 May 2022
Scalable algorithms for physics-informed neural and graph networks
Scalable algorithms for physics-informed neural and graph networks
K. Shukla
Mengjia Xu
N. Trask
George Karniadakis
PINN
AI4CE
59
39
0
16 May 2022
Learning Label Initialization for Time-Dependent Harmonic Extension
Learning Label Initialization for Time-Dependent Harmonic Extension
A. Azad
25
1
0
03 May 2022
Graph Anisotropic Diffusion
Graph Anisotropic Diffusion
Ahmed A. A. Elhag
Gabriele Corso
Hannes Stärk
Michael M. Bronstein
DiffM
GNN
17
0
0
30 Apr 2022
GCN-FFNN: A Two-Stream Deep Model for Learning Solution to Partial
  Differential Equations
GCN-FFNN: A Two-Stream Deep Model for Learning Solution to Partial Differential Equations
Onur Bilgin
Thomas Vergutz
S. Mehrkanoon
GNN
9
3
0
28 Apr 2022
Proximal Implicit ODE Solvers for Accelerating Learning Neural ODEs
Proximal Implicit ODE Solvers for Accelerating Learning Neural ODEs
Justin Baker
Hedi Xia
Yiwei Wang
E. Cherkaev
A. Narayan
Long Chen
Jack Xin
Andrea L. Bertozzi
Stanley J. Osher
Bao Wang
14
5
0
19 Apr 2022
Learning time-dependent PDE solver using Message Passing Graph Neural
  Networks
Learning time-dependent PDE solver using Message Passing Graph Neural Networks
Pourya Pilva
A. Zareei
AI4CE
25
6
0
15 Apr 2022
Learning the Dynamics of Physical Systems from Sparse Observations with
  Finite Element Networks
Learning the Dynamics of Physical Systems from Sparse Observations with Finite Element Networks
Marten Lienen
Stephan Günnemann
AI4TS
14
37
0
16 Mar 2022
Graph-Coupled Oscillator Networks
Graph-Coupled Oscillator Networks
T. Konstantin Rusch
B. Chamberlain
J. Rowbottom
S. Mishra
M. Bronstein
31
101
0
04 Feb 2022
Data-Centric Engineering: integrating simulation, machine learning and
  statistics. Challenges and Opportunities
Data-Centric Engineering: integrating simulation, machine learning and statistics. Challenges and Opportunities
Indranil Pan
L. Mason
Omar K. Matar
AI4CE
36
45
0
07 Nov 2021
Constructing Neural Network-Based Models for Simulating Dynamical
  Systems
Constructing Neural Network-Based Models for Simulating Dynamical Systems
Christian Møldrup Legaard
Thomas Schranz
G. Schweiger
Ján Drgovna
Basak Falay
C. Gomes
Alexandros Iosifidis
M. Abkar
P. Larsen
PINN
AI4CE
20
91
0
02 Nov 2021
Beltrami Flow and Neural Diffusion on Graphs
Beltrami Flow and Neural Diffusion on Graphs
B. Chamberlain
J. Rowbottom
D. Eynard
Francesco Di Giovanni
Xiaowen Dong
M. Bronstein
AI4CE
32
79
0
18 Oct 2021
Robust and Scalable SDE Learning: A Functional Perspective
Robust and Scalable SDE Learning: A Functional Perspective
Scott A. Cameron
Tyron Cameron
Arnu Pretorius
Stephen J. Roberts
8
2
0
11 Oct 2021
Heavy Ball Neural Ordinary Differential Equations
Heavy Ball Neural Ordinary Differential Equations
Hedi Xia
Vai Suliafu
H. Ji
T. Nguyen
Andrea L. Bertozzi
Stanley J. Osher
Bao Wang
25
55
0
10 Oct 2021
Physics-Guided Deep Learning for Dynamical Systems: A Survey
Physics-Guided Deep Learning for Dynamical Systems: A Survey
Rui Wang
Rose Yu
AI4CE
PINN
28
64
0
02 Jul 2021
GRAND: Graph Neural Diffusion
GRAND: Graph Neural Diffusion
B. Chamberlain
J. Rowbottom
Maria I. Gorinova
Stefan Webb
Emanuele Rossi
M. Bronstein
GNN
22
253
0
21 Jun 2021
Accelerating Dynamical System Simulations with Contracting and
  Physics-Projected Neural-Newton Solvers
Accelerating Dynamical System Simulations with Contracting and Physics-Projected Neural-Newton Solvers
Samuel C. Chevalier
Jochen Stiasny
Spyros Chatzivasileiadis
17
3
0
04 Jun 2021
Diffusion Mechanism in Residual Neural Network: Theory and Applications
Diffusion Mechanism in Residual Neural Network: Theory and Applications
Tangjun Wang
Zehao Dou
Chenglong Bao
Zuoqiang Shi
DiffM
22
7
0
07 May 2021
Dissecting the Diffusion Process in Linear Graph Convolutional Networks
Dissecting the Diffusion Process in Linear Graph Convolutional Networks
Yifei Wang
Yisen Wang
Jiansheng Yang
Zhouchen Lin
GNN
30
77
0
22 Feb 2021
Towards Scale-Invariant Graph-related Problem Solving by Iterative
  Homogeneous Graph Neural Networks
Towards Scale-Invariant Graph-related Problem Solving by Iterative Homogeneous Graph Neural Networks
Hao Tang
Zhiao Huang
Jiayuan Gu
Bao-Liang Lu
Hao Su
AI4CE
15
9
0
26 Oct 2020
Neural Ordinary Differential Equations for Intervention Modeling
Neural Ordinary Differential Equations for Intervention Modeling
Daehoon Gwak
Gyuhyeon Sim
Michael Poli
Stefano Massaroli
Jaegul Choo
E. Choi
37
19
0
16 Oct 2020
TorchDyn: A Neural Differential Equations Library
TorchDyn: A Neural Differential Equations Library
Michael Poli
Stefano Massaroli
Atsushi Yamashita
Hajime Asama
Jinkyoo Park
AI4CE
6
24
0
20 Sep 2020
Continuous-in-Depth Neural Networks
Continuous-in-Depth Neural Networks
A. Queiruga
N. Benjamin Erichson
D. Taylor
Michael W. Mahoney
8
45
0
05 Aug 2020
Hypersolvers: Toward Fast Continuous-Depth Models
Hypersolvers: Toward Fast Continuous-Depth Models
Michael Poli
Stefano Massaroli
Atsushi Yamashita
Hajime Asama
Jinkyoo Park
BDL
AI4CE
8
46
0
19 Jul 2020
Previous
123
Next