Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1911.07676
Cited By
Learning with Good Feature Representations in Bandits and in RL with a Generative Model
18 November 2019
Tor Lattimore
Csaba Szepesvári
Gellert Weisz
OffRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning with Good Feature Representations in Bandits and in RL with a Generative Model"
50 / 57 papers shown
Title
Optimal Transfer Learning for Missing Not-at-Random Matrix Completion
Akhil Jalan
Yassir Jedra
Arya Mazumdar
Soumendu Sundar Mukherjee
Purnamrita Sarkar
192
0
0
28 Feb 2025
Linear Bandits with Partially Observable Features
Wonyoung Hedge Kim
Sungwoo Park
G. Iyengar
A. Zeevi
Min Hwan Oh
65
0
0
10 Feb 2025
Causal Bandits: The Pareto Optimal Frontier of Adaptivity, a Reduction to Linear Bandits, and Limitations around Unknown Marginals
Ziyi Liu
Idan Attias
Daniel M. Roy
CML
31
0
0
01 Jul 2024
Policy Mirror Descent with Lookahead
Kimon Protopapas
Anas Barakat
29
1
0
21 Mar 2024
When is Agnostic Reinforcement Learning Statistically Tractable?
Zeyu Jia
Gene Li
Alexander Rakhlin
Ayush Sekhari
Nathan Srebro
OffRL
32
5
0
09 Oct 2023
Distributionally Robust Model-based Reinforcement Learning with Large State Spaces
Shyam Sundhar Ramesh
Pier Giuseppe Sessa
Yifan Hu
Andreas Krause
Ilija Bogunovic
OOD
42
10
0
05 Sep 2023
The Optimal Approximation Factors in Misspecified Off-Policy Value Function Estimation
P. Amortila
Nan Jiang
Csaba Szepesvári
OffRL
29
3
0
25 Jul 2023
Provable and Practical: Efficient Exploration in Reinforcement Learning via Langevin Monte Carlo
Haque Ishfaq
Qingfeng Lan
Pan Xu
A. R. Mahmood
Doina Precup
Anima Anandkumar
Kamyar Azizzadenesheli
BDL
OffRL
28
20
0
29 May 2023
Regularization and Variance-Weighted Regression Achieves Minimax Optimality in Linear MDPs: Theory and Practice
Toshinori Kitamura
Tadashi Kozuno
Yunhao Tang
Nino Vieillard
Michal Valko
...
Olivier Pietquin
M. Geist
Csaba Szepesvári
Wataru Kumagai
Yutaka Matsuo
OffRL
30
2
0
22 May 2023
Does Sparsity Help in Learning Misspecified Linear Bandits?
Jialin Dong
Lin F. Yang
25
1
0
29 Mar 2023
Reinforcement Learning with Function Approximation: From Linear to Nonlinear
Jihao Long
Jiequn Han
27
5
0
20 Feb 2023
Efficient Planning in Combinatorial Action Spaces with Applications to Cooperative Multi-Agent Reinforcement Learning
Volodymyr Tkachuk
Seyed Alireza Bakhtiari
Johannes Kirschner
Matej Jusup
Ilija Bogunovic
Csaba Szepesvári
32
4
0
08 Feb 2023
(Private) Kernelized Bandits with Distributed Biased Feedback
Fengjiao Li
Xingyu Zhou
Bo Ji
33
5
0
28 Jan 2023
Near-optimal Policy Identification in Active Reinforcement Learning
Xiang Li
Viraj Mehta
Johannes Kirschner
I. Char
Willie Neiswanger
J. Schneider
Andreas Krause
Ilija Bogunovic
OffRL
43
6
0
19 Dec 2022
Linear Reinforcement Learning with Ball Structure Action Space
Zeyu Jia
Randy Jia
Dhruv Madeka
Dean Phillips Foster
25
1
0
14 Nov 2022
Contexts can be Cheap: Solving Stochastic Contextual Bandits with Linear Bandit Algorithms
Osama A. Hanna
Lin F. Yang
Christina Fragouli
27
11
0
08 Nov 2022
Scalable Representation Learning in Linear Contextual Bandits with Constant Regret Guarantees
Andrea Tirinzoni
Matteo Papini
Ahmed Touati
A. Lazaric
Matteo Pirotta
28
4
0
24 Oct 2022
Efficient Global Planning in Large MDPs via Stochastic Primal-Dual Optimization
Gergely Neu
Nneka Okolo
34
6
0
21 Oct 2022
Tractable Optimality in Episodic Latent MABs
Jeongyeol Kwon
Yonathan Efroni
C. Caramanis
Shie Mannor
50
3
0
05 Oct 2022
Best Policy Identification in Linear MDPs
Jerome Taupin
Yassir Jedra
Alexandre Proutière
44
3
0
11 Aug 2022
Differentially Private Linear Bandits with Partial Distributed Feedback
Fengjiao Li
Xingyu Zhou
Bo Ji
FedML
34
13
0
12 Jul 2022
Nearly Optimal Algorithms for Linear Contextual Bandits with Adversarial Corruptions
Jiafan He
Dongruo Zhou
Tong Zhang
Quanquan Gu
66
46
0
13 May 2022
Efficient Active Learning with Abstention
Yinglun Zhu
Robert D. Nowak
49
11
0
31 Mar 2022
Flexible and Efficient Contextual Bandits with Heterogeneous Treatment Effect Oracles
Aldo G. Carranza
Sanath Kumar Krishnamurthy
Susan Athey
19
1
0
30 Mar 2022
A Complete Characterization of Linear Estimators for Offline Policy Evaluation
Juan C. Perdomo
A. Krishnamurthy
Peter L. Bartlett
Sham Kakade
OffRL
27
3
0
08 Mar 2022
Exponential Family Model-Based Reinforcement Learning via Score Matching
Gen Li
Junbo Li
Anmol Kabra
Nathan Srebro
Zhaoran Wang
Zhuoran Yang
32
4
0
28 Dec 2021
Recent Advances in Reinforcement Learning in Finance
B. Hambly
Renyuan Xu
Huining Yang
OffRL
29
167
0
08 Dec 2021
Offline Reinforcement Learning: Fundamental Barriers for Value Function Approximation
Dylan J. Foster
A. Krishnamurthy
D. Simchi-Levi
Yunzong Xu
OffRL
21
62
0
21 Nov 2021
Exploiting Action Impact Regularity and Exogenous State Variables for Offline Reinforcement Learning
Vincent Liu
James Wright
Martha White
OffRL
31
1
0
15 Nov 2021
Misspecified Gaussian Process Bandit Optimization
Ilija Bogunovic
Andreas Krause
57
42
0
09 Nov 2021
Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification
Clémence Réda
Andrea Tirinzoni
Rémy Degenne
31
9
0
02 Nov 2021
Reinforcement Learning in Linear MDPs: Constant Regret and Representation Selection
Matteo Papini
Andrea Tirinzoni
Aldo Pacchiano
Marcello Restelli
A. Lazaric
Matteo Pirotta
19
18
0
27 Oct 2021
When Are Linear Stochastic Bandits Attackable?
Huazheng Wang
Haifeng Xu
Hongning Wang
AAML
37
10
0
18 Oct 2021
Bad-Policy Density: A Measure of Reinforcement Learning Hardness
David Abel
Cameron Allen
Dilip Arumugam
D Ellis Hershkowitz
Michael L. Littman
Lawson L. S. Wong
26
2
0
07 Oct 2021
Near Instance Optimal Model Selection for Pure Exploration Linear Bandits
Yinglun Zhu
Julian Katz-Samuels
Robert D. Nowak
38
6
0
10 Sep 2021
Efficient Local Planning with Linear Function Approximation
Dong Yin
Botao Hao
Yasin Abbasi-Yadkori
N. Lazić
Csaba Szepesvári
32
19
0
12 Aug 2021
Bayesian decision-making under misspecified priors with applications to meta-learning
Max Simchowitz
Christopher Tosh
A. Krishnamurthy
Daniel J. Hsu
Thodoris Lykouris
Miroslav Dudík
Robert Schapire
40
49
0
03 Jul 2021
On component interactions in two-stage recommender systems
Jiri Hron
K. Krauth
Michael I. Jordan
Niki Kilbertus
CML
LRM
40
31
0
28 Jun 2021
Which Mutual-Information Representation Learning Objectives are Sufficient for Control?
Kate Rakelly
Abhishek Gupta
Carlos Florensa
Sergey Levine
SSL
26
38
0
14 Jun 2021
Sample-Efficient Reinforcement Learning Is Feasible for Linearly Realizable MDPs with Limited Revisiting
Gen Li
Yuxin Chen
Yuejie Chi
Yuantao Gu
Yuting Wei
OffRL
26
28
0
17 May 2021
Leveraging Good Representations in Linear Contextual Bandits
Matteo Papini
Andrea Tirinzoni
Marcello Restelli
A. Lazaric
Matteo Pirotta
30
26
0
08 Apr 2021
An Exponential Lower Bound for Linearly-Realizable MDPs with Constant Suboptimality Gap
Yuanhao Wang
Ruosong Wang
Sham Kakade
OffRL
39
43
0
23 Mar 2021
Sample-Efficient Learning of Stackelberg Equilibria in General-Sum Games
Yu Bai
Chi Jin
Haiquan Wang
Caiming Xiong
44
67
0
23 Feb 2021
Model-free Representation Learning and Exploration in Low-rank MDPs
Aditya Modi
Jinglin Chen
A. Krishnamurthy
Nan Jiang
Alekh Agarwal
OffRL
102
78
0
14 Feb 2021
Provably Efficient Reinforcement Learning with Linear Function Approximation Under Adaptivity Constraints
Chi Jin
Zhuoran Yang
Zhaoran Wang
OffRL
122
166
0
06 Jan 2021
Exponential Lower Bounds for Batch Reinforcement Learning: Batch RL can be Exponentially Harder than Online RL
Andrea Zanette
OffRL
26
71
0
14 Dec 2020
On Function Approximation in Reinforcement Learning: Optimism in the Face of Large State Spaces
Zhuoran Yang
Chi Jin
Zhaoran Wang
Mengdi Wang
Michael I. Jordan
39
18
0
09 Nov 2020
Provably Efficient Reward-Agnostic Navigation with Linear Value Iteration
Andrea Zanette
A. Lazaric
Mykel J. Kochenderfer
Emma Brunskill
20
64
0
18 Aug 2020
Efficient Planning in Large MDPs with Weak Linear Function Approximation
R. Shariff
Csaba Szepesvári
39
22
0
13 Jul 2020
Provably Efficient Reinforcement Learning for Discounted MDPs with Feature Mapping
Dongruo Zhou
Jiafan He
Quanquan Gu
30
133
0
23 Jun 2020
1
2
Next