ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.07676
  4. Cited By
Learning with Good Feature Representations in Bandits and in RL with a
  Generative Model

Learning with Good Feature Representations in Bandits and in RL with a Generative Model

18 November 2019
Tor Lattimore
Csaba Szepesvári
Gellert Weisz
    OffRL
ArXivPDFHTML

Papers citing "Learning with Good Feature Representations in Bandits and in RL with a Generative Model"

50 / 57 papers shown
Title
Optimal Transfer Learning for Missing Not-at-Random Matrix Completion
Akhil Jalan
Yassir Jedra
Arya Mazumdar
Soumendu Sundar Mukherjee
Purnamrita Sarkar
192
0
0
28 Feb 2025
Linear Bandits with Partially Observable Features
Wonyoung Hedge Kim
Sungwoo Park
G. Iyengar
A. Zeevi
Min Hwan Oh
65
0
0
10 Feb 2025
Causal Bandits: The Pareto Optimal Frontier of Adaptivity, a Reduction
  to Linear Bandits, and Limitations around Unknown Marginals
Causal Bandits: The Pareto Optimal Frontier of Adaptivity, a Reduction to Linear Bandits, and Limitations around Unknown Marginals
Ziyi Liu
Idan Attias
Daniel M. Roy
CML
31
0
0
01 Jul 2024
Policy Mirror Descent with Lookahead
Policy Mirror Descent with Lookahead
Kimon Protopapas
Anas Barakat
29
1
0
21 Mar 2024
When is Agnostic Reinforcement Learning Statistically Tractable?
When is Agnostic Reinforcement Learning Statistically Tractable?
Zeyu Jia
Gene Li
Alexander Rakhlin
Ayush Sekhari
Nathan Srebro
OffRL
32
5
0
09 Oct 2023
Distributionally Robust Model-based Reinforcement Learning with Large
  State Spaces
Distributionally Robust Model-based Reinforcement Learning with Large State Spaces
Shyam Sundhar Ramesh
Pier Giuseppe Sessa
Yifan Hu
Andreas Krause
Ilija Bogunovic
OOD
42
10
0
05 Sep 2023
The Optimal Approximation Factors in Misspecified Off-Policy Value
  Function Estimation
The Optimal Approximation Factors in Misspecified Off-Policy Value Function Estimation
P. Amortila
Nan Jiang
Csaba Szepesvári
OffRL
29
3
0
25 Jul 2023
Provable and Practical: Efficient Exploration in Reinforcement Learning
  via Langevin Monte Carlo
Provable and Practical: Efficient Exploration in Reinforcement Learning via Langevin Monte Carlo
Haque Ishfaq
Qingfeng Lan
Pan Xu
A. R. Mahmood
Doina Precup
Anima Anandkumar
Kamyar Azizzadenesheli
BDL
OffRL
28
20
0
29 May 2023
Regularization and Variance-Weighted Regression Achieves Minimax
  Optimality in Linear MDPs: Theory and Practice
Regularization and Variance-Weighted Regression Achieves Minimax Optimality in Linear MDPs: Theory and Practice
Toshinori Kitamura
Tadashi Kozuno
Yunhao Tang
Nino Vieillard
Michal Valko
...
Olivier Pietquin
M. Geist
Csaba Szepesvári
Wataru Kumagai
Yutaka Matsuo
OffRL
30
2
0
22 May 2023
Does Sparsity Help in Learning Misspecified Linear Bandits?
Does Sparsity Help in Learning Misspecified Linear Bandits?
Jialin Dong
Lin F. Yang
25
1
0
29 Mar 2023
Reinforcement Learning with Function Approximation: From Linear to
  Nonlinear
Reinforcement Learning with Function Approximation: From Linear to Nonlinear
Jihao Long
Jiequn Han
27
5
0
20 Feb 2023
Efficient Planning in Combinatorial Action Spaces with Applications to
  Cooperative Multi-Agent Reinforcement Learning
Efficient Planning in Combinatorial Action Spaces with Applications to Cooperative Multi-Agent Reinforcement Learning
Volodymyr Tkachuk
Seyed Alireza Bakhtiari
Johannes Kirschner
Matej Jusup
Ilija Bogunovic
Csaba Szepesvári
32
4
0
08 Feb 2023
(Private) Kernelized Bandits with Distributed Biased Feedback
(Private) Kernelized Bandits with Distributed Biased Feedback
Fengjiao Li
Xingyu Zhou
Bo Ji
33
5
0
28 Jan 2023
Near-optimal Policy Identification in Active Reinforcement Learning
Near-optimal Policy Identification in Active Reinforcement Learning
Xiang Li
Viraj Mehta
Johannes Kirschner
I. Char
Willie Neiswanger
J. Schneider
Andreas Krause
Ilija Bogunovic
OffRL
43
6
0
19 Dec 2022
Linear Reinforcement Learning with Ball Structure Action Space
Linear Reinforcement Learning with Ball Structure Action Space
Zeyu Jia
Randy Jia
Dhruv Madeka
Dean Phillips Foster
25
1
0
14 Nov 2022
Contexts can be Cheap: Solving Stochastic Contextual Bandits with Linear
  Bandit Algorithms
Contexts can be Cheap: Solving Stochastic Contextual Bandits with Linear Bandit Algorithms
Osama A. Hanna
Lin F. Yang
Christina Fragouli
27
11
0
08 Nov 2022
Scalable Representation Learning in Linear Contextual Bandits with
  Constant Regret Guarantees
Scalable Representation Learning in Linear Contextual Bandits with Constant Regret Guarantees
Andrea Tirinzoni
Matteo Papini
Ahmed Touati
A. Lazaric
Matteo Pirotta
28
4
0
24 Oct 2022
Efficient Global Planning in Large MDPs via Stochastic Primal-Dual
  Optimization
Efficient Global Planning in Large MDPs via Stochastic Primal-Dual Optimization
Gergely Neu
Nneka Okolo
34
6
0
21 Oct 2022
Tractable Optimality in Episodic Latent MABs
Tractable Optimality in Episodic Latent MABs
Jeongyeol Kwon
Yonathan Efroni
C. Caramanis
Shie Mannor
50
3
0
05 Oct 2022
Best Policy Identification in Linear MDPs
Best Policy Identification in Linear MDPs
Jerome Taupin
Yassir Jedra
Alexandre Proutière
44
3
0
11 Aug 2022
Differentially Private Linear Bandits with Partial Distributed Feedback
Differentially Private Linear Bandits with Partial Distributed Feedback
Fengjiao Li
Xingyu Zhou
Bo Ji
FedML
34
13
0
12 Jul 2022
Nearly Optimal Algorithms for Linear Contextual Bandits with Adversarial
  Corruptions
Nearly Optimal Algorithms for Linear Contextual Bandits with Adversarial Corruptions
Jiafan He
Dongruo Zhou
Tong Zhang
Quanquan Gu
66
46
0
13 May 2022
Efficient Active Learning with Abstention
Efficient Active Learning with Abstention
Yinglun Zhu
Robert D. Nowak
49
11
0
31 Mar 2022
Flexible and Efficient Contextual Bandits with Heterogeneous Treatment
  Effect Oracles
Flexible and Efficient Contextual Bandits with Heterogeneous Treatment Effect Oracles
Aldo G. Carranza
Sanath Kumar Krishnamurthy
Susan Athey
19
1
0
30 Mar 2022
A Complete Characterization of Linear Estimators for Offline Policy
  Evaluation
A Complete Characterization of Linear Estimators for Offline Policy Evaluation
Juan C. Perdomo
A. Krishnamurthy
Peter L. Bartlett
Sham Kakade
OffRL
27
3
0
08 Mar 2022
Exponential Family Model-Based Reinforcement Learning via Score Matching
Exponential Family Model-Based Reinforcement Learning via Score Matching
Gen Li
Junbo Li
Anmol Kabra
Nathan Srebro
Zhaoran Wang
Zhuoran Yang
32
4
0
28 Dec 2021
Recent Advances in Reinforcement Learning in Finance
Recent Advances in Reinforcement Learning in Finance
B. Hambly
Renyuan Xu
Huining Yang
OffRL
29
167
0
08 Dec 2021
Offline Reinforcement Learning: Fundamental Barriers for Value Function
  Approximation
Offline Reinforcement Learning: Fundamental Barriers for Value Function Approximation
Dylan J. Foster
A. Krishnamurthy
D. Simchi-Levi
Yunzong Xu
OffRL
21
62
0
21 Nov 2021
Exploiting Action Impact Regularity and Exogenous State Variables for
  Offline Reinforcement Learning
Exploiting Action Impact Regularity and Exogenous State Variables for Offline Reinforcement Learning
Vincent Liu
James Wright
Martha White
OffRL
31
1
0
15 Nov 2021
Misspecified Gaussian Process Bandit Optimization
Misspecified Gaussian Process Bandit Optimization
Ilija Bogunovic
Andreas Krause
57
42
0
09 Nov 2021
Dealing With Misspecification In Fixed-Confidence Linear Top-m
  Identification
Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification
Clémence Réda
Andrea Tirinzoni
Rémy Degenne
31
9
0
02 Nov 2021
Reinforcement Learning in Linear MDPs: Constant Regret and
  Representation Selection
Reinforcement Learning in Linear MDPs: Constant Regret and Representation Selection
Matteo Papini
Andrea Tirinzoni
Aldo Pacchiano
Marcello Restelli
A. Lazaric
Matteo Pirotta
19
18
0
27 Oct 2021
When Are Linear Stochastic Bandits Attackable?
When Are Linear Stochastic Bandits Attackable?
Huazheng Wang
Haifeng Xu
Hongning Wang
AAML
37
10
0
18 Oct 2021
Bad-Policy Density: A Measure of Reinforcement Learning Hardness
Bad-Policy Density: A Measure of Reinforcement Learning Hardness
David Abel
Cameron Allen
Dilip Arumugam
D Ellis Hershkowitz
Michael L. Littman
Lawson L. S. Wong
26
2
0
07 Oct 2021
Near Instance Optimal Model Selection for Pure Exploration Linear
  Bandits
Near Instance Optimal Model Selection for Pure Exploration Linear Bandits
Yinglun Zhu
Julian Katz-Samuels
Robert D. Nowak
38
6
0
10 Sep 2021
Efficient Local Planning with Linear Function Approximation
Efficient Local Planning with Linear Function Approximation
Dong Yin
Botao Hao
Yasin Abbasi-Yadkori
N. Lazić
Csaba Szepesvári
32
19
0
12 Aug 2021
Bayesian decision-making under misspecified priors with applications to
  meta-learning
Bayesian decision-making under misspecified priors with applications to meta-learning
Max Simchowitz
Christopher Tosh
A. Krishnamurthy
Daniel J. Hsu
Thodoris Lykouris
Miroslav Dudík
Robert Schapire
40
49
0
03 Jul 2021
On component interactions in two-stage recommender systems
On component interactions in two-stage recommender systems
Jiri Hron
K. Krauth
Michael I. Jordan
Niki Kilbertus
CML
LRM
40
31
0
28 Jun 2021
Which Mutual-Information Representation Learning Objectives are
  Sufficient for Control?
Which Mutual-Information Representation Learning Objectives are Sufficient for Control?
Kate Rakelly
Abhishek Gupta
Carlos Florensa
Sergey Levine
SSL
26
38
0
14 Jun 2021
Sample-Efficient Reinforcement Learning Is Feasible for Linearly
  Realizable MDPs with Limited Revisiting
Sample-Efficient Reinforcement Learning Is Feasible for Linearly Realizable MDPs with Limited Revisiting
Gen Li
Yuxin Chen
Yuejie Chi
Yuantao Gu
Yuting Wei
OffRL
26
28
0
17 May 2021
Leveraging Good Representations in Linear Contextual Bandits
Leveraging Good Representations in Linear Contextual Bandits
Matteo Papini
Andrea Tirinzoni
Marcello Restelli
A. Lazaric
Matteo Pirotta
30
26
0
08 Apr 2021
An Exponential Lower Bound for Linearly-Realizable MDPs with Constant
  Suboptimality Gap
An Exponential Lower Bound for Linearly-Realizable MDPs with Constant Suboptimality Gap
Yuanhao Wang
Ruosong Wang
Sham Kakade
OffRL
39
43
0
23 Mar 2021
Sample-Efficient Learning of Stackelberg Equilibria in General-Sum Games
Sample-Efficient Learning of Stackelberg Equilibria in General-Sum Games
Yu Bai
Chi Jin
Haiquan Wang
Caiming Xiong
44
67
0
23 Feb 2021
Model-free Representation Learning and Exploration in Low-rank MDPs
Model-free Representation Learning and Exploration in Low-rank MDPs
Aditya Modi
Jinglin Chen
A. Krishnamurthy
Nan Jiang
Alekh Agarwal
OffRL
102
78
0
14 Feb 2021
Provably Efficient Reinforcement Learning with Linear Function
  Approximation Under Adaptivity Constraints
Provably Efficient Reinforcement Learning with Linear Function Approximation Under Adaptivity Constraints
Chi Jin
Zhuoran Yang
Zhaoran Wang
OffRL
122
166
0
06 Jan 2021
Exponential Lower Bounds for Batch Reinforcement Learning: Batch RL can
  be Exponentially Harder than Online RL
Exponential Lower Bounds for Batch Reinforcement Learning: Batch RL can be Exponentially Harder than Online RL
Andrea Zanette
OffRL
26
71
0
14 Dec 2020
On Function Approximation in Reinforcement Learning: Optimism in the
  Face of Large State Spaces
On Function Approximation in Reinforcement Learning: Optimism in the Face of Large State Spaces
Zhuoran Yang
Chi Jin
Zhaoran Wang
Mengdi Wang
Michael I. Jordan
39
18
0
09 Nov 2020
Provably Efficient Reward-Agnostic Navigation with Linear Value
  Iteration
Provably Efficient Reward-Agnostic Navigation with Linear Value Iteration
Andrea Zanette
A. Lazaric
Mykel J. Kochenderfer
Emma Brunskill
20
64
0
18 Aug 2020
Efficient Planning in Large MDPs with Weak Linear Function Approximation
Efficient Planning in Large MDPs with Weak Linear Function Approximation
R. Shariff
Csaba Szepesvári
39
22
0
13 Jul 2020
Provably Efficient Reinforcement Learning for Discounted MDPs with
  Feature Mapping
Provably Efficient Reinforcement Learning for Discounted MDPs with Feature Mapping
Dongruo Zhou
Jiafan He
Quanquan Gu
30
133
0
23 Jun 2020
12
Next