ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.08411
  4. Cited By
Mixed-curvature Variational Autoencoders

Mixed-curvature Variational Autoencoders

19 November 2019
Ondrej Skopek
O. Ganea
Gary Bécigneul
    CML
    DRL
    BDL
ArXivPDFHTML

Papers citing "Mixed-curvature Variational Autoencoders"

17 / 17 papers shown
Title
Geometric sparsification in recurrent neural networks
Geometric sparsification in recurrent neural networks
Wyatt Mackey
Ioannis Schizas
Jared Deighton
David L. Boothe, Jr.
Vasileios Maroulas
28
0
0
10 Jun 2024
Mixed-Curvature Decision Trees and Random Forests
Mixed-Curvature Decision Trees and Random Forests
Philippe Chlenski
Quentin Chu
I. Pe’er
36
1
0
07 Jun 2024
Manifold Integrated Gradients: Riemannian Geometry for Feature
  Attribution
Manifold Integrated Gradients: Riemannian Geometry for Feature Attribution
Eslam Zaher
Maciej Trzaskowski
Quan Nguyen
Fred Roosta
AAML
24
4
0
16 May 2024
HyperVQ: MLR-based Vector Quantization in Hyperbolic Space
HyperVQ: MLR-based Vector Quantization in Hyperbolic Space
Nabarun Goswami
Yusuke Mukuta
Tatsuya Harada
40
3
0
18 Mar 2024
A Survey on Temporal Knowledge Graph Completion: Taxonomy, Progress, and
  Prospects
A Survey on Temporal Knowledge Graph Completion: Taxonomy, Progress, and Prospects
Jiapu Wang
Boyue Wang
M. Qiu
Shirui Pan
Bo Xiong
...
Linhao Luo
Tengfei Liu
Yongli Hu
Baocai Yin
Wen Gao
36
19
0
04 Aug 2023
Exploring Data Geometry for Continual Learning
Exploring Data Geometry for Continual Learning
Zhi Gao
C. Xu
Feng Li
Yunde Jia
Mehrtash Harandi
Yuwei Wu
CLL
21
9
0
08 Apr 2023
Neural networks learn to magnify areas near decision boundaries
Neural networks learn to magnify areas near decision boundaries
Jacob A. Zavatone-Veth
Sheng Yang
Julian Rubinfien
C. Pehlevan
MLT
AI4CE
20
6
0
26 Jan 2023
Bayesian Learning for Neural Networks: an algorithmic survey
Bayesian Learning for Neural Networks: an algorithmic survey
M. Magris
Alexandros Iosifidis
BDL
DRL
29
68
0
21 Nov 2022
Poincaré Heterogeneous Graph Neural Networks for Sequential
  Recommendation
Poincaré Heterogeneous Graph Neural Networks for Sequential Recommendation
Naicheng Guo
Xiaolei Liu
Shaoshuai Li
Qiongxu Ma
Kaixin Gao
Bing Han
Lin Zheng
Xiaobo Guo
18
14
0
16 May 2022
Provably Accurate and Scalable Linear Classifiers in Hyperbolic Spaces
Provably Accurate and Scalable Linear Classifiers in Hyperbolic Spaces
Chao Pan
Eli Chien
Puoya Tabaghi
Jianhao Peng
O. Milenkovic
8
3
0
07 Mar 2022
Heterogeneous manifolds for curvature-aware graph embedding
Heterogeneous manifolds for curvature-aware graph embedding
Francesco Di Giovanni
Giulia Luise
M. Bronstein
54
23
0
02 Feb 2022
A Self-supervised Mixed-curvature Graph Neural Network
A Self-supervised Mixed-curvature Graph Neural Network
Li Sun
Zhongbao Zhang
Junda Ye
Hao Peng
Jiawei Zhang
Sen Su
Philip S. Yu
SSL
28
33
0
10 Dec 2021
Neural Distance Embeddings for Biological Sequences
Neural Distance Embeddings for Biological Sequences
Gabriele Corso
Rex Ying
Michal Pándy
Petar Velivcković
J. Leskovec
Pietro Lió
17
40
0
20 Sep 2021
Riemannian Continuous Normalizing Flows
Riemannian Continuous Normalizing Flows
Emile Mathieu
Maximilian Nickel
AI4CE
25
118
0
18 Jun 2020
Neural Manifold Ordinary Differential Equations
Neural Manifold Ordinary Differential Equations
Aaron Lou
Derek Lim
Isay Katsman
Leo Huang
Qingxuan Jiang
Ser-Nam Lim
Christopher De Sa
BDL
AI4CE
10
78
0
18 Jun 2020
Variational Autoencoders with Riemannian Brownian Motion Priors
Variational Autoencoders with Riemannian Brownian Motion Priors
Dimitris Kalatzis
David Eklund
Georgios Arvanitidis
Søren Hauberg
BDL
DRL
58
48
0
12 Feb 2020
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
238
3,234
0
24 Nov 2016
1