Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
All Papers
0 / 0 papers shown
Title
Home
Papers
1911.09032
Cited By
v1
v2
v3 (latest)
Outside the Box: Abstraction-Based Monitoring of Neural Networks
European Conference on Artificial Intelligence (ECAI), 2019
20 November 2019
T. Henzinger
Anna Lukina
Christian Schilling
AAML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Outside the Box: Abstraction-Based Monitoring of Neural Networks"
38 / 38 papers shown
Title
Runtime Safety Monitoring of Deep Neural Networks for Perception: A Survey
Albert Schotschneider
Svetlana Pavlitska
Johann Marius Zöllner
AAML
AI4CE
227
0
0
08 Nov 2025
Out-of-Distribution Detection using Counterfactual Distance
Maria Stoica
Francesco Leofante
Alessio Lomuscio
OODD
176
0
0
13 Aug 2025
Enhancing System Self-Awareness and Trust of AI: A Case Study in Trajectory Prediction and Planning
Lars Ullrich
Zurab Mujirishvili
Knut Graichen
227
2
0
25 Apr 2025
Safety Monitoring of Machine Learning Perception Functions: a Survey
International Conference on Climate Informatics (ICCI), 2024
Raul Sena Ferreira
Joris Guérin
Kevin Delmas
Jérémie Guiochet
H. Waeselynck
314
4
0
09 Dec 2024
Attention Masks Help Adversarial Attacks to Bypass Safety Detectors
Yunfan Shi
AAML
305
0
0
07 Nov 2024
A Systematic Review of Edge Case Detection in Automated Driving: Methods, Challenges and Future Directions
Saeed Rahmani
Sabine Rieder
Erwin de Gelder
Marcel Sonntag
Jorge Lorente Mallada
Sytze Kalisvaart
Vahid Hashemi
Simeon C. Calvert
274
3
0
11 Oct 2024
Gaussian-Based and Outside-the-Box Runtime Monitoring Join Forces
Runtime Verification (RV), 2024
Vahid Hashemi
Jan Křetínský
Sabine Rieder
Torsten Schön
Jan Vorhoff
189
2
0
08 Oct 2024
Monitizer: Automating Design and Evaluation of Neural Network Monitors
International Conference on Computer Aided Verification (CAV), 2024
Muqsit Azeem
Marta Grobelna
Sudeep Kanav
Jan Křetínský
Stefanie Mohr
Sabine Rieder
215
2
0
16 May 2024
Can we Defend Against the Unknown? An Empirical Study About Threshold Selection for Neural Network Monitoring
Conference on Uncertainty in Artificial Intelligence (UAI), 2024
Khoi Tran Dang
Kevin Delmas
Jérémie Guiochet
Joris Guérin
283
1
0
14 May 2024
Online Safety Analysis for LLMs: a Benchmark, an Assessment, and a Path Forward
Xuan Xie
Yuheng Huang
Zhehua Zhou
Yuheng Huang
Da Song
Lei Ma
OffRL
385
12
0
12 Apr 2024
BAM: Box Abstraction Monitors for Real-time OoD Detection in Object Detection
Changshun Wu
Weicheng He
Chih-Hong Cheng
Xiaowei Huang
Saddek Bensalem
211
5
0
27 Mar 2024
On the Detection of Anomalous or Out-Of-Distribution Data in Vision Models Using Statistical Techniques
Laura O'Mahony
David JP O'Sullivan
Nikola S. Nikolov
164
1
0
21 Mar 2024
A Low-cost Strategic Monitoring Approach for Scalable and Interpretable Error Detection in Deep Neural Networks
International Conference on Computer Safety, Reliability, and Security (SAFECOMP), 2023
Florian Geissler
S. Qutub
Michael Paulitsch
Karthik Pattabiraman
190
7
0
31 Oct 2023
LUNA: A Model-Based Universal Analysis Framework for Large Language Models
IEEE Transactions on Software Engineering (TSE), 2023
Da Song
Xuan Xie
Yuheng Huang
Derui Zhu
Yuheng Huang
Felix Juefei Xu
Lei Ma
ALM
338
9
0
22 Oct 2023
Runtime Monitoring DNN-Based Perception
Runtime Verification (RV), 2023
Chih-Hong Cheng
Michael Luttenberger
Rongjie Yan
182
3
0
06 Oct 2023
SMARLA: A Safety Monitoring Approach for Deep Reinforcement Learning Agents
IEEE Transactions on Software Engineering (TSE), 2023
Amirhossein Zolfagharian
Manel Abdellatif
Lionel C. Briand
S. Ramesh
277
12
0
03 Aug 2023
What, Indeed, is an Achievable Provable Guarantee for Learning-Enabled Safety Critical Systems
Saddek Bensalem
Chih-Hong Cheng
Wei Huang
Xiaowei Huang
Changshun Wu
Xingyu Zhao
AAML
245
10
0
20 Jul 2023
Preventing Errors in Person Detection: A Part-Based Self-Monitoring Framework
Franziska Schwaiger
A. Matic
Karsten Roscher
Stephan Günnemann
181
0
0
10 Jul 2023
A Survey of Safety and Trustworthiness of Large Language Models through the Lens of Verification and Validation
Artificial Intelligence Review (AIR), 2023
Xiaowei Huang
Wenjie Ruan
Wei Huang
Gao Jin
Yizhen Dong
...
Sihao Wu
Peipei Xu
Dengyu Wu
André Freitas
Mustafa A. Mustafa
ALM
347
143
0
19 May 2023
Detection of out-of-distribution samples using binary neuron activation patterns
Computer Vision and Pattern Recognition (CVPR), 2022
Bartlomiej Olber
Krystian Radlak
A. Popowicz
Michal Szczepankiewicz
K. Chachula
OODD
221
18
0
29 Dec 2022
Runtime Monitoring for Out-of-Distribution Detection in Object Detection Neural Networks
World Congress on Formal Methods (FM), 2022
V. Hashemi
Jan Křetínský
Sabine Rieder
J. Schmidt
OODD
166
9
0
15 Dec 2022
Out-Of-Distribution Detection Is Not All You Need
AAAI Conference on Artificial Intelligence (AAAI), 2022
Joris Guérin
Kevin Delmas
Raul Sena Ferreira
Jérémie Guiochet
OODD
295
39
0
29 Nov 2022
Correct-by-Construction Runtime Enforcement in AI -- A Survey
Bettina Könighofer
Roderick Bloem
Rüdiger Ehlers
Christian Pek
156
13
0
30 Aug 2022
Prioritizing Corners in OoD Detectors via Symbolic String Manipulation
Automated Technology for Verification and Analysis (ATVA), 2022
Chih-Hong Cheng
Changshun Wu
Emmanouil Seferis
Saddek Bensalem
269
3
0
16 May 2022
Benchmarking Safety Monitors for Image Classifiers with Machine Learning
Raul Sena Ferreira
J. Arlat
Jérémie Guiochet
H. Waeselynck
160
27
0
04 Oct 2021
Beyond Robustness: A Taxonomy of Approaches towards Resilient Multi-Robot Systems
Amanda Prorok
Matthew Malencia
Luca Carlone
Gaurav Sukhatme
Brian M. Sadler
Vijay Kumar
235
69
0
25 Sep 2021
Hack The Box: Fooling Deep Learning Abstraction-Based Monitors
Sara Al Hajj Ibrahim
M. Nassar
AAML
160
2
0
10 Jul 2021
SpecRepair: Counter-Example Guided Safety Repair of Deep Neural Networks
SPIN (SPIN), 2021
Fabian Bauer-Marquart
David Boetius
Stefan Leue
Christian Schilling
AAML
504
7
0
03 Jun 2021
Customizable Reference Runtime Monitoring of Neural Networks using Resolution Boxes
Runtime Verification (RV), 2021
Changshun Wu
Yliès Falcone
Saddek Bensalem
264
13
0
25 Apr 2021
Monitoring Object Detection Abnormalities via Data-Label and Post-Algorithm Abstractions
IEEE/RJS International Conference on Intelligent RObots and Systems (IROS), 2021
Yuhang Chen
Chih-Hong Cheng
Jun Yan
Rongjie Yan
131
7
0
29 Mar 2021
Abstraction and Symbolic Execution of Deep Neural Networks with Bayesian Approximation of Hidden Features
Nicolas Berthier
Amany Alshareef
James Sharp
S. Schewe
Xiaowei Huang
165
10
0
05 Mar 2021
Run-Time Monitoring of Machine Learning for Robotic Perception: A Survey of Emerging Trends
IEEE Access (IEEE Access), 2021
Q. Rahman
Peter Corke
Feras Dayoub
OOD
441
64
0
05 Jan 2021
Provably-Robust Runtime Monitoring of Neuron Activation Patterns
Design, Automation and Test in Europe (DATE), 2020
Chih-Hong Cheng
AAML
202
13
0
24 Nov 2020
Continuous Safety Verification of Neural Networks
Chih-Hong Cheng
Rongjie Yan
192
12
0
12 Oct 2020
Into the Unknown: Active Monitoring of Neural Networks
Runtime Verification (RV), 2020
Anna Lukina
Christian Schilling
T. Henzinger
AAML
350
29
0
14 Sep 2020
Online Monitoring for Neural Network Based Monocular Pedestrian Pose Estimation
Arjun Gupta
Luca Carlone
3DH
155
9
0
11 May 2020
Model Assertions for Monitoring and Improving ML Models
Conference on Machine Learning and Systems (MLSys), 2020
Daniel Kang
Deepti Raghavan
Peter Bailis
Matei A. Zaharia
263
65
0
03 Mar 2020
Input Validation for Neural Networks via Runtime Local Robustness Verification
Jiangchao Liu
Liqian Chen
A. Miné
Ji Wang
AAML
192
11
0
09 Feb 2020
1