Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1911.10500
Cited By
Causality for Machine Learning
24 November 2019
Bernhard Schölkopf
CML
AI4CE
LRM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Causality for Machine Learning"
47 / 97 papers shown
Title
Causal Multi-Agent Reinforcement Learning: Review and Open Problems
St John Grimbly
Jonathan P. Shock
Arnu Pretorius
44
17
0
12 Nov 2021
Sparsely Changing Latent States for Prediction and Planning in Partially Observable Domains
Christian Gumbsch
Martin Volker Butz
Georg Martius
AI4CE
26
21
0
29 Oct 2021
GalilAI: Out-of-Task Distribution Detection using Causal Active Experimentation for Safe Transfer RL
Sumedh Anand Sontakke
Stephen Iota
Zizhao Hu
Arash Mehrjou
Laurent Itti
Bernhard Schölkopf
OODD
20
2
0
29 Oct 2021
Action-Sufficient State Representation Learning for Control with Structural Constraints
Erdun Gao
Chaochao Lu
Liu Leqi
José Miguel Hernández-Lobato
Clark Glymour
Bernhard Schölkopf
Kun Zhang
56
32
0
12 Oct 2021
Optimization-based Causal Estimation from Heterogenous Environments
Mingzhang Yin
Yixin Wang
David M. Blei
OOD
88
17
0
24 Sep 2021
Causal Inference in Natural Language Processing: Estimation, Prediction, Interpretation and Beyond
Amir Feder
Katherine A. Keith
Emaad A. Manzoor
Reid Pryzant
Dhanya Sridhar
...
Roi Reichart
Margaret E. Roberts
Brandon M Stewart
Victor Veitch
Diyi Yang
CML
41
235
0
02 Sep 2021
Strategic Instrumental Variable Regression: Recovering Causal Relationships From Strategic Responses
Keegan Harris
Daniel Ngo
Logan Stapleton
Hoda Heidari
Zhiwei Steven Wu
19
31
0
12 Jul 2021
AdaRL: What, Where, and How to Adapt in Transfer Reinforcement Learning
Erdun Gao
Fan Feng
Chaochao Lu
Sara Magliacane
Kun Zhang
44
66
0
06 Jul 2021
Finding Valid Adjustments under Non-ignorability with Minimal DAG Knowledge
Abhin Shah
Karthikeyan Shanmugam
Kartik Ahuja
CML
36
13
0
22 Jun 2021
Causal Navigation by Continuous-time Neural Networks
Charles J. Vorbach
Ramin Hasani
Alexander Amini
Mathias Lechner
Daniela Rus
26
47
0
15 Jun 2021
Neural graphical modelling in continuous-time: consistency guarantees and algorithms
Alexis Bellot
K. Branson
M. Schaar
CML
AI4TS
29
44
0
06 May 2021
Causal Learning for Socially Responsible AI
Lu Cheng
Ahmadreza Mosallanezhad
Paras Sheth
Huan Liu
85
13
0
25 Apr 2021
Unsuitability of NOTEARS for Causal Graph Discovery
Marcus Kaiser
Maksim Sipos
CML
37
65
0
12 Apr 2021
Causal Reasoning in Simulation for Structure and Transfer Learning of Robot Manipulation Policies
Timothy E. Lee
Jialiang Zhao
A. Sawhney
Siddharth Girdhar
Oliver Kroemer
CML
29
32
0
31 Mar 2021
Embracing the Disharmony in Medical Imaging: A Simple and Effective Framework for Domain Adaptation
Rongguang Wang
Pratik Chaudhari
Christos Davatzikos
OOD
47
50
0
23 Mar 2021
Adversarial Training is Not Ready for Robot Learning
Mathias Lechner
Ramin Hasani
Radu Grosu
Daniela Rus
T. Henzinger
AAML
38
34
0
15 Mar 2021
Size-Invariant Graph Representations for Graph Classification Extrapolations
Beatrice Bevilacqua
Yangze Zhou
Bruno Ribeiro
OOD
40
108
0
08 Mar 2021
D'ya like DAGs? A Survey on Structure Learning and Causal Discovery
M. Vowels
Necati Cihan Camgöz
Richard Bowden
CML
43
297
0
03 Mar 2021
Counterfactual Zero-Shot and Open-Set Visual Recognition
Zhongqi Yue
Tan Wang
Hanwang Zhang
Qianru Sun
Xiansheng Hua
BDL
166
194
0
01 Mar 2021
Beware of the Simulated DAG! Causal Discovery Benchmarks May Be Easy To Game
Alexander G. Reisach
C. Seiler
S. Weichwald
CML
27
137
0
26 Feb 2021
Counterfactual Generative Networks
Axel Sauer
Andreas Geiger
OOD
BDL
CML
43
124
0
15 Jan 2021
Learning Contextual Causality from Time-consecutive Images
Hongming Zhang
Yintong Huo
Xinran Zhao
Yangqiu Song
Dan Roth
CML
32
6
0
13 Dec 2020
On the Binding Problem in Artificial Neural Networks
Klaus Greff
Sjoerd van Steenkiste
Jürgen Schmidhuber
OCL
233
255
0
09 Dec 2020
No Subclass Left Behind: Fine-Grained Robustness in Coarse-Grained Classification Problems
N. Sohoni
Jared A. Dunnmon
Geoffrey Angus
Albert Gu
Christopher Ré
30
243
0
25 Nov 2020
Learning causal representations for robust domain adaptation
shuai Yang
Kui Yu
Fuyuan Cao
Lin Liu
Hongya Wang
Jiuyong Li
OOD
CML
TTA
20
44
0
12 Nov 2020
Underspecification Presents Challenges for Credibility in Modern Machine Learning
Alexander DÁmour
Katherine A. Heller
D. Moldovan
Ben Adlam
B. Alipanahi
...
Kellie Webster
Steve Yadlowsky
T. Yun
Xiaohua Zhai
D. Sculley
OffRL
77
671
0
06 Nov 2020
Latent Causal Invariant Model
Xinwei Sun
Botong Wu
Xiangyu Zheng
Chang-Shu Liu
Wei Chen
Tao Qin
Tie-Yan Liu
OOD
CML
BDL
31
14
0
04 Nov 2020
Learning Causal Semantic Representation for Out-of-Distribution Prediction
Chang-Shu Liu
Xinwei Sun
Jindong Wang
Haoyue Tang
Tao Li
Tao Qin
Wei Chen
Tie-Yan Liu
CML
OODD
OOD
35
104
0
03 Nov 2020
Reinforcement Learning of Causal Variables Using Mediation Analysis
Tue Herlau
Rasmus Larsen
OOD
CML
32
8
0
29 Oct 2020
Generative Neurosymbolic Machines
Jindong Jiang
Sungjin Ahn
BDL
OCL
225
68
0
23 Oct 2020
Interpretable Machine Learning -- A Brief History, State-of-the-Art and Challenges
Christoph Molnar
Giuseppe Casalicchio
B. Bischl
AI4TS
AI4CE
25
396
0
19 Oct 2020
CausalWorld: A Robotic Manipulation Benchmark for Causal Structure and Transfer Learning
Ossama Ahmed
Frederik Trauble
Anirudh Goyal
Alexander Neitz
Yoshua Bengio
Bernhard Schölkopf
M. Wuthrich
Stefan Bauer
CML
37
120
0
08 Oct 2020
Physical System for Non Time Sequence Data
Xiong Chen
CML
13
0
0
07 Oct 2020
Causal Curiosity: RL Agents Discovering Self-supervised Experiments for Causal Representation Learning
Sumedh Anand Sontakke
Arash Mehrjou
Laurent Itti
Bernhard Schölkopf
CML
25
60
0
07 Oct 2020
The Intriguing Relation Between Counterfactual Explanations and Adversarial Examples
Timo Freiesleben
GAN
46
62
0
11 Sep 2020
Learning explanations that are hard to vary
Giambattista Parascandolo
Alexander Neitz
Antonio Orvieto
Luigi Gresele
Bernhard Schölkopf
FAtt
27
179
0
01 Sep 2020
A causal view of compositional zero-shot recognition
Yuval Atzmon
Felix Kreuk
Uri Shalit
Gal Chechik
OCL
BDL
CML
61
118
0
25 Jun 2020
Learning Invariant Representations for Reinforcement Learning without Reconstruction
Amy Zhang
R. McAllister
Roberto Calandra
Y. Gal
Sergey Levine
OOD
SSL
60
464
0
18 Jun 2020
On Disentangled Representations Learned From Correlated Data
Frederik Trauble
Elliot Creager
Niki Kilbertus
Francesco Locatello
Andrea Dittadi
Anirudh Goyal
Bernhard Schölkopf
Stefan Bauer
OOD
CML
29
115
0
14 Jun 2020
Deep Structural Causal Models for Tractable Counterfactual Inference
Nick Pawlowski
Daniel Coelho De Castro
Ben Glocker
CML
MedIm
33
232
0
11 Jun 2020
Urban Anomaly Analytics: Description, Detection, and Prediction
Mingyang Zhang
Tong Li
Yue Yu
Yong Li
Pan Hui
Yu Zheng
33
75
0
25 Apr 2020
Deep Learning for Time Series Forecasting: Tutorial and Literature Survey
Konstantinos Benidis
Syama Sundar Rangapuram
Valentin Flunkert
Bernie Wang
Danielle C. Maddix
...
David Salinas
Lorenzo Stella
François-Xavier Aubet
Laurent Callot
Tim Januschowski
AI4TS
27
176
0
21 Apr 2020
CausalVAE: Structured Causal Disentanglement in Variational Autoencoder
Mengyue Yang
Furui Liu
Zhitang Chen
Xinwei Shen
Jianye Hao
Jun Wang
OOD
CoGe
CML
41
44
0
18 Apr 2020
Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
CoGe
OOD
DRL
184
314
0
07 Feb 2020
Improving Generalizability of Fake News Detection Methods using Propensity Score Matching
Bo Ni
Zhichun Guo
Jianing Li
Meng Jiang
23
12
0
28 Jan 2020
Causality-based Feature Selection: Methods and Evaluations
Kui Yu
Xianjie Guo
Lin Liu
Jiuyong Li
Hao Wang
Zhaolong Ling
Xindong Wu
CML
24
92
0
17 Nov 2019
From Ordinary Differential Equations to Structural Causal Models: the deterministic case
Joris Mooij
Dominik Janzing
Bernhard Schölkopf
76
101
0
09 Aug 2014
Previous
1
2