Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
All Papers
0 / 0 papers shown
Title
Home
Papers
1911.11380
Cited By
Using Physics-Informed Super-Resolution Generative Adversarial Networks for Subgrid Modeling in Turbulent Reactive Flows
26 November 2019
Mathis Bode
M. Gauding
Zeyu Lian
D. Denker
M. Davidovic
K. Kleinheinz
J. Jitsev
H. Pitsch
AI4CE
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Using Physics-Informed Super-Resolution Generative Adversarial Networks for Subgrid Modeling in Turbulent Reactive Flows"
8 / 8 papers shown
Title
Vision-Informed Flow Image Super-Resolution with Quaternion Spatial Modeling and Dynamic Flow Convolution
Qinglong Cao
Zhengqin Xu
Chao Ma
Xiaokang Yang
Yuntian Chen
122
0
0
29 Jan 2024
Origin-Destination Network Generation via Gravity-Guided GAN
Can Rong
Huandong Wang
Yong Li
176
9
0
06 Jun 2023
Physics-informed Deep Super-resolution for Spatiotemporal Data
Pu Ren
Chengping Rao
Yang Liu
Zihan Ma
Qi Wang
Jianxin Wang
Hao Sun
256
14
0
02 Aug 2022
PhySRNet: Physics informed super-resolution network for application in computational solid mechanics
Rajat Arora
AI4CE
229
12
0
30 Jun 2022
Machine Learning-Accelerated Computational Solid Mechanics: Application to Linear Elasticity
Rajat Arora
AI4CE
230
7
0
16 Dec 2021
A Hybrid Science-Guided Machine Learning Approach for Modeling and Optimizing Chemical Processes
Niket Sharma
Y. A. Liu
157
116
0
02 Dec 2021
Integrating Domain Knowledge in Data-driven Earth Observation with Process Convolutions
IEEE Transactions on Geoscience and Remote Sensing (TGRS), 2021
D. Svendsen
M. Piles
Jordi Munoz-Marí
D. Luengo
Luca Martino
Gustau Camps-Valls
176
17
0
16 Apr 2021
Physics-Informed Neural Network Super Resolution for Advection-Diffusion Models
Chulin Wang
E. Bentivegna
Wang Zhou
L. Klein
Bruce Elmegreen
DiffM
201
36
0
04 Nov 2020
1