ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.11380
  4. Cited By
Using Physics-Informed Super-Resolution Generative Adversarial Networks
  for Subgrid Modeling in Turbulent Reactive Flows

Using Physics-Informed Super-Resolution Generative Adversarial Networks for Subgrid Modeling in Turbulent Reactive Flows

26 November 2019
Mathis Bode
M. Gauding
Zeyu Lian
D. Denker
M. Davidovic
K. Kleinheinz
J. Jitsev
H. Pitsch
    AI4CE
ArXiv (abs)PDFHTML

Papers citing "Using Physics-Informed Super-Resolution Generative Adversarial Networks for Subgrid Modeling in Turbulent Reactive Flows"

8 / 8 papers shown
Vision-Informed Flow Image Super-Resolution with Quaternion Spatial
  Modeling and Dynamic Flow Convolution
Vision-Informed Flow Image Super-Resolution with Quaternion Spatial Modeling and Dynamic Flow Convolution
Qinglong Cao
Zhengqin Xu
Chao Ma
Xiaokang Yang
Yuntian Chen
130
0
0
29 Jan 2024
Origin-Destination Network Generation via Gravity-Guided GAN
Origin-Destination Network Generation via Gravity-Guided GAN
Can Rong
Huandong Wang
Yong Li
189
10
0
06 Jun 2023
Physics-informed Deep Super-resolution for Spatiotemporal Data
Physics-informed Deep Super-resolution for Spatiotemporal Data
Pu Ren
Chengping Rao
Yang Liu
Zihan Ma
Qi Wang
Jianxin Wang
Hao Sun
276
14
0
02 Aug 2022
PhySRNet: Physics informed super-resolution network for application in
  computational solid mechanics
PhySRNet: Physics informed super-resolution network for application in computational solid mechanics
Rajat Arora
AI4CE
235
12
0
30 Jun 2022
Machine Learning-Accelerated Computational Solid Mechanics: Application
  to Linear Elasticity
Machine Learning-Accelerated Computational Solid Mechanics: Application to Linear Elasticity
Rajat Arora
AI4CE
237
7
0
16 Dec 2021
A Hybrid Science-Guided Machine Learning Approach for Modeling and
  Optimizing Chemical Processes
A Hybrid Science-Guided Machine Learning Approach for Modeling and Optimizing Chemical Processes
Niket Sharma
Y. A. Liu
172
116
0
02 Dec 2021
Integrating Domain Knowledge in Data-driven Earth Observation with
  Process Convolutions
Integrating Domain Knowledge in Data-driven Earth Observation with Process ConvolutionsIEEE Transactions on Geoscience and Remote Sensing (TGRS), 2021
D. Svendsen
M. Piles
Jordi Munoz-Marí
D. Luengo
Luca Martino
Gustau Camps-Valls
185
17
0
16 Apr 2021
Physics-Informed Neural Network Super Resolution for Advection-Diffusion
  Models
Physics-Informed Neural Network Super Resolution for Advection-Diffusion Models
Chulin Wang
E. Bentivegna
Wang Zhou
L. Klein
Bruce Elmegreen
DiffM
202
36
0
04 Nov 2020
1
Page 1 of 1