ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.13071
  4. Cited By
Increasing Generality in Machine Learning through Procedural Content
  Generation

Increasing Generality in Machine Learning through Procedural Content Generation

29 November 2019
S. Risi
Julian Togelius
ArXivPDFHTML

Papers citing "Increasing Generality in Machine Learning through Procedural Content Generation"

10 / 10 papers shown
Title
Causally Aligned Curriculum Learning
Causally Aligned Curriculum Learning
Mingxuan Li
Junzhe Zhang
Elias Bareinboim
CML
56
3
0
21 Mar 2025
Measuring Diversity of Game Scenarios
Measuring Diversity of Game Scenarios
Yuchen Li
Ziqi Wang
Qingquan Zhang
Jialin Liu
J. Liu
63
2
0
17 Jan 2025
Variational Offline Multi-agent Skill Discovery
Variational Offline Multi-agent Skill Discovery
Jiayu Chen
Bhargav Ganguly
Tian-Shing Lan
OffRL
58
1
0
26 May 2024
Powderworld: A Platform for Understanding Generalization via Rich Task
  Distributions
Powderworld: A Platform for Understanding Generalization via Rich Task Distributions
Kevin Frans
Phillip Isola
OffRL
24
9
0
23 Nov 2022
Replay-Guided Adversarial Environment Design
Replay-Guided Adversarial Environment Design
Minqi Jiang
Michael Dennis
Jack Parker-Holder
Jakob N. Foerster
Edward Grefenstette
Tim Rocktaschel
116
94
0
06 Oct 2021
Active Reinforcement Learning over MDPs
Qi Yang
Peng Yang
K. Tang
14
0
0
05 Aug 2021
Experience-Driven PCG via Reinforcement Learning: A Super Mario Bros
  Study
Experience-Driven PCG via Reinforcement Learning: A Super Mario Bros Study
Tianye Shu
Jialin Liu
Georgios N. Yannakakis
22
40
0
30 Jun 2021
Learning with AMIGo: Adversarially Motivated Intrinsic Goals
Learning with AMIGo: Adversarially Motivated Intrinsic Goals
Andres Campero
Roberta Raileanu
Heinrich Küttler
J. Tenenbaum
Tim Rocktaschel
Edward Grefenstette
11
125
0
22 Jun 2020
Evolving Mario Levels in the Latent Space of a Deep Convolutional
  Generative Adversarial Network
Evolving Mario Levels in the Latent Space of a Deep Convolutional Generative Adversarial Network
Vanessa Volz
Jacob Schrum
Jialin Liu
Simon Lucas
Adam M. Smith
S. Risi
GAN
65
229
0
02 May 2018
CAD2RL: Real Single-Image Flight without a Single Real Image
CAD2RL: Real Single-Image Flight without a Single Real Image
Fereshteh Sadeghi
Sergey Levine
SSL
216
808
0
13 Nov 2016
1