ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.00018
  4. Cited By
On the Heavy-Tailed Theory of Stochastic Gradient Descent for Deep
  Neural Networks

On the Heavy-Tailed Theory of Stochastic Gradient Descent for Deep Neural Networks

29 November 2019
Umut Simsekli
Mert Gurbuzbalaban
T. H. Nguyen
G. Richard
Levent Sagun
ArXivPDFHTML

Papers citing "On the Heavy-Tailed Theory of Stochastic Gradient Descent for Deep Neural Networks"

13 / 13 papers shown
Title
Nonlinear Stochastic Gradient Descent and Heavy-tailed Noise: A Unified Framework and High-probability Guarantees
Nonlinear Stochastic Gradient Descent and Heavy-tailed Noise: A Unified Framework and High-probability Guarantees
Aleksandar Armacki
Shuhua Yu
Pranay Sharma
Gauri Joshi
Dragana Bajović
D. Jakovetić
S. Kar
57
2
0
17 Oct 2024
Differential Private Stochastic Optimization with Heavy-tailed Data:
  Towards Optimal Rates
Differential Private Stochastic Optimization with Heavy-tailed Data: Towards Optimal Rates
Puning Zhao
Jiafei Wu
Zhe Liu
Chong Wang
Rongfei Fan
Qingming Li
45
1
0
19 Aug 2024
Stochastic Nonsmooth Convex Optimization with Heavy-Tailed Noises:
  High-Probability Bound, In-Expectation Rate and Initial Distance Adaptation
Stochastic Nonsmooth Convex Optimization with Heavy-Tailed Noises: High-Probability Bound, In-Expectation Rate and Initial Distance Adaptation
Zijian Liu
Zhengyuan Zhou
24
10
0
22 Mar 2023
Breaking the Lower Bound with (Little) Structure: Acceleration in
  Non-Convex Stochastic Optimization with Heavy-Tailed Noise
Breaking the Lower Bound with (Little) Structure: Acceleration in Non-Convex Stochastic Optimization with Heavy-Tailed Noise
Zijian Liu
Jiawei Zhang
Zhengyuan Zhou
32
12
0
14 Feb 2023
Cyclic and Randomized Stepsizes Invoke Heavier Tails in SGD than
  Constant Stepsize
Cyclic and Randomized Stepsizes Invoke Heavier Tails in SGD than Constant Stepsize
Mert Gurbuzbalaban
Yuanhan Hu
Umut Simsekli
Lingjiong Zhu
LRM
20
1
0
10 Feb 2023
Heavy-Tail Phenomenon in Decentralized SGD
Heavy-Tail Phenomenon in Decentralized SGD
Mert Gurbuzbalaban
Yuanhan Hu
Umut Simsekli
Kun Yuan
Lingjiong Zhu
32
8
0
13 May 2022
Nonlinear gradient mappings and stochastic optimization: A general
  framework with applications to heavy-tail noise
Nonlinear gradient mappings and stochastic optimization: A general framework with applications to heavy-tail noise
D. Jakovetić
Dragana Bajović
Anit Kumar Sahu
S. Kar
Nemanja Milošević
Dusan Stamenkovic
17
12
0
06 Apr 2022
Intrinsic Dimension, Persistent Homology and Generalization in Neural
  Networks
Intrinsic Dimension, Persistent Homology and Generalization in Neural Networks
Tolga Birdal
Aaron Lou
Leonidas J. Guibas
Umut cSimcsekli
27
61
0
25 Nov 2021
Exponential escape efficiency of SGD from sharp minima in non-stationary
  regime
Exponential escape efficiency of SGD from sharp minima in non-stationary regime
Hikaru Ibayashi
Masaaki Imaizumi
26
4
0
07 Nov 2021
Fractal Structure and Generalization Properties of Stochastic
  Optimization Algorithms
Fractal Structure and Generalization Properties of Stochastic Optimization Algorithms
A. Camuto
George Deligiannidis
Murat A. Erdogdu
Mert Gurbuzbalaban
Umut cSimcsekli
Lingjiong Zhu
27
29
0
09 Jun 2021
Convergence Rates of Stochastic Gradient Descent under Infinite Noise
  Variance
Convergence Rates of Stochastic Gradient Descent under Infinite Noise Variance
Hongjian Wang
Mert Gurbuzbalaban
Lingjiong Zhu
Umut cSimcsekli
Murat A. Erdogdu
15
41
0
20 Feb 2021
Hausdorff Dimension, Heavy Tails, and Generalization in Neural Networks
Hausdorff Dimension, Heavy Tails, and Generalization in Neural Networks
Umut Simsekli
Ozan Sener
George Deligiannidis
Murat A. Erdogdu
44
55
0
16 Jun 2020
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp
  Minima
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
281
2,889
0
15 Sep 2016
1