ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.00869
  4. Cited By
More Is Less: Learning Efficient Video Representations by Big-Little
  Network and Depthwise Temporal Aggregation

More Is Less: Learning Efficient Video Representations by Big-Little Network and Depthwise Temporal Aggregation

2 December 2019
Quanfu Fan
Chun-Fu Chen
Hilde Kuehne
Marco Pistoia
David D. Cox
ArXivPDFHTML

Papers citing "More Is Less: Learning Efficient Video Representations by Big-Little Network and Depthwise Temporal Aggregation"

23 / 23 papers shown
Title
Density-Guided Label Smoothing for Temporal Localization of Driving
  Actions
Density-Guided Label Smoothing for Temporal Localization of Driving Actions
Tunç Alkanat
Erkut Akdag
Egor Bondarev
Peter H. N. de With
33
4
0
11 Mar 2024
Sample Less, Learn More: Efficient Action Recognition via Frame Feature
  Restoration
Sample Less, Learn More: Efficient Action Recognition via Frame Feature Restoration
Harry Cheng
Yangyang Guo
Liqiang Nie
Zhiyong Cheng
Mohan S. Kankanhalli
37
7
0
27 Jul 2023
Is end-to-end learning enough for fitness activity recognition?
Is end-to-end learning enough for fitness activity recognition?
Antoine Mercier
Guillaume Berger
Sunny Panchal
Florian Letsch
Cornelius Boehm
Nahua Kang
Ingo Bax
Roland Memisevic
21
2
0
14 May 2023
Look More but Care Less in Video Recognition
Look More but Care Less in Video Recognition
Yitian Zhang
Yue Bai
Haiquan Wang
Yi Xu
Yun Fu
17
9
0
18 Nov 2022
Efficient Attention-free Video Shift Transformers
Efficient Attention-free Video Shift Transformers
Adrian Bulat
Brais Martínez
Georgios Tzimiropoulos
ViT
27
1
0
23 Aug 2022
Deformable Video Transformer
Deformable Video Transformer
Jue Wang
Lorenzo Torresani
ViT
22
28
0
31 Mar 2022
Gate-Shift-Fuse for Video Action Recognition
Gate-Shift-Fuse for Video Action Recognition
Swathikiran Sudhakaran
Sergio Escalera
O. Lanz
20
22
0
16 Mar 2022
Action Keypoint Network for Efficient Video Recognition
Action Keypoint Network for Efficient Video Recognition
Xu Chen
Yahong Han
Xiaohan Wang
Yifang Sun
Yi Yang
3DPC
19
6
0
17 Jan 2022
Representing Videos as Discriminative Sub-graphs for Action Recognition
Representing Videos as Discriminative Sub-graphs for Action Recognition
Dong Li
Zhaofan Qiu
Yingwei Pan
Ting Yao
Houqiang Li
Tao Mei
23
25
0
11 Jan 2022
BEVT: BERT Pretraining of Video Transformers
BEVT: BERT Pretraining of Video Transformers
Rui Wang
Dongdong Chen
Zuxuan Wu
Yinpeng Chen
Xiyang Dai
Mengchen Liu
Yu-Gang Jiang
Luowei Zhou
Lu Yuan
ViT
25
203
0
02 Dec 2021
PolyViT: Co-training Vision Transformers on Images, Videos and Audio
PolyViT: Co-training Vision Transformers on Images, Videos and Audio
Valerii Likhosherstov
Anurag Arnab
K. Choromanski
Mario Lucic
Yi Tay
Adrian Weller
Mostafa Dehghani
ViT
33
73
0
25 Nov 2021
Efficient Video Transformers with Spatial-Temporal Token Selection
Efficient Video Transformers with Spatial-Temporal Token Selection
Junke Wang
Xitong Yang
Hengduo Li
Li Liu
Zuxuan Wu
Yu-Gang Jiang
ViT
14
63
0
23 Nov 2021
Temporal-attentive Covariance Pooling Networks for Video Recognition
Temporal-attentive Covariance Pooling Networks for Video Recognition
Zilin Gao
Qilong Wang
Bingbing Zhang
Q. Hu
P. Li
13
24
0
27 Oct 2021
Searching for Two-Stream Models in Multivariate Space for Video
  Recognition
Searching for Two-Stream Models in Multivariate Space for Video Recognition
Xinyu Gong
Heng Wang
Zheng Shou
Matt Feiszli
Zhangyang Wang
Zhicheng Yan
22
9
0
30 Aug 2021
MM-ViT: Multi-Modal Video Transformer for Compressed Video Action
  Recognition
MM-ViT: Multi-Modal Video Transformer for Compressed Video Action Recognition
Jiawei Chen
C. Ho
ViT
24
76
0
20 Aug 2021
Attention Bottlenecks for Multimodal Fusion
Attention Bottlenecks for Multimodal Fusion
Arsha Nagrani
Shan Yang
Anurag Arnab
A. Jansen
Cordelia Schmid
Chen Sun
25
539
0
30 Jun 2021
Space-time Mixing Attention for Video Transformer
Space-time Mixing Attention for Video Transformer
Adrian Bulat
Juan-Manuel Perez-Rua
Swathikiran Sudhakaran
Brais Martínez
Georgios Tzimiropoulos
ViT
25
124
0
10 Jun 2021
AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition
AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition
Rameswar Panda
Chun-Fu Chen
Quanfu Fan
Ximeng Sun
Kate Saenko
A. Oliva
Rogerio Feris
28
47
0
11 May 2021
ViViT: A Video Vision Transformer
ViViT: A Video Vision Transformer
Anurag Arnab
Mostafa Dehghani
G. Heigold
Chen Sun
Mario Lucic
Cordelia Schmid
ViT
30
2,085
0
29 Mar 2021
VA-RED$^2$: Video Adaptive Redundancy Reduction
VA-RED2^22: Video Adaptive Redundancy Reduction
Bowen Pan
Rameswar Panda
Camilo Luciano Fosco
Chung-Ching Lin
A. Andonian
Yue Meng
Kate Saenko
A. Oliva
Rogerio Feris
15
19
0
15 Feb 2021
Is Space-Time Attention All You Need for Video Understanding?
Is Space-Time Attention All You Need for Video Understanding?
Gedas Bertasius
Heng Wang
Lorenzo Torresani
ViT
280
1,981
0
09 Feb 2021
GTA: Global Temporal Attention for Video Action Understanding
GTA: Global Temporal Attention for Video Action Understanding
Bo He
Xitong Yang
Zuxuan Wu
Hao Chen
Ser-Nam Lim
Abhinav Shrivastava
ViT
24
27
0
15 Dec 2020
ECO: Efficient Convolutional Network for Online Video Understanding
ECO: Efficient Convolutional Network for Online Video Understanding
Mohammadreza Zolfaghari
Kamaljeet Singh
Thomas Brox
119
496
0
24 Apr 2018
1