Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1912.01597
Cited By
Stochastic Newton and Cubic Newton Methods with Simple Local Linear-Quadratic Rates
3 December 2019
D. Kovalev
Konstantin Mishchenko
Peter Richtárik
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Stochastic Newton and Cubic Newton Methods with Simple Local Linear-Quadratic Rates"
16 / 16 papers shown
Title
A Unified Gradient-based Framework for Task-agnostic Continual Learning-Unlearning
Zhehao Huang
Xinwen Cheng
Jie Zhang
Jinghao Zheng
Haoran Wang
Zhengbao He
Tao Li
Xiaolin Huang
CLL
35
0
0
21 May 2025
The Limits and Potentials of Local SGD for Distributed Heterogeneous Learning with Intermittent Communication
Kumar Kshitij Patel
Margalit Glasgow
Ali Zindari
Lingxiao Wang
Sebastian U. Stich
Ziheng Cheng
Nirmit Joshi
Nathan Srebro
48
6
0
19 May 2024
Extra-Newton: A First Approach to Noise-Adaptive Accelerated Second-Order Methods
Kimon Antonakopoulos
Ali Kavis
V. Cevher
ODL
34
12
0
03 Nov 2022
Super-Universal Regularized Newton Method
N. Doikov
Konstantin Mishchenko
Y. Nesterov
14
29
0
11 Aug 2022
SP2: A Second Order Stochastic Polyak Method
Shuang Li
W. Swartworth
Martin Takávc
Deanna Needell
Robert Mansel Gower
29
13
0
17 Jul 2022
Distributed Newton-Type Methods with Communication Compression and Bernoulli Aggregation
Rustem Islamov
Xun Qian
Slavomír Hanzely
M. Safaryan
Peter Richtárik
40
16
0
07 Jun 2022
Stochastic Variance-Reduced Newton: Accelerating Finite-Sum Minimization with Large Batches
Michal Derezinski
55
6
0
06 Jun 2022
Augmented Newton Method for Optimization: Global Linear Rate and Momentum Interpretation
M. Morshed
ODL
24
1
0
23 May 2022
Hessian Averaging in Stochastic Newton Methods Achieves Superlinear Convergence
Sen Na
Michal Derezinski
Michael W. Mahoney
27
16
0
20 Apr 2022
Basis Matters: Better Communication-Efficient Second Order Methods for Federated Learning
Xun Qian
Rustem Islamov
M. Safaryan
Peter Richtárik
FedML
24
23
0
02 Nov 2021
Distributed Second Order Methods with Fast Rates and Compressed Communication
Rustem Islamov
Xun Qian
Peter Richtárik
34
51
0
14 Feb 2021
Variance-Reduced Methods for Machine Learning
Robert Mansel Gower
Mark Schmidt
Francis R. Bach
Peter Richtárik
21
111
0
02 Oct 2020
Optimization for Supervised Machine Learning: Randomized Algorithms for Data and Parameters
Filip Hanzely
39
0
0
26 Aug 2020
Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization
Samuel Horváth
Lihua Lei
Peter Richtárik
Michael I. Jordan
57
30
0
13 Feb 2020
Surpassing Gradient Descent Provably: A Cyclic Incremental Method with Linear Convergence Rate
Aryan Mokhtari
Mert Gurbuzbalaban
Alejandro Ribeiro
35
36
0
01 Nov 2016
A Proximal Stochastic Quasi-Newton Algorithm
Luo Luo
Zihao Chen
Zhihua Zhang
Wu-Jun Li
ODL
19
6
0
31 Jan 2016
1