ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.02478
  4. Cited By
Effective Data Augmentation Approaches to End-to-End Task-Oriented
  Dialogue

Effective Data Augmentation Approaches to End-to-End Task-Oriented Dialogue

International Conference on Asian Language Processing (IALP), 2019
5 December 2019
Jun Quan
Deyi Xiong
ArXiv (abs)PDFHTML

Papers citing "Effective Data Augmentation Approaches to End-to-End Task-Oriented Dialogue"

8 / 8 papers shown
Title
Comparing Data Augmentation Methods for End-to-End Task-Oriented Dialog
  Systems
Comparing Data Augmentation Methods for End-to-End Task-Oriented Dialog SystemsAnnual Meeting of the Association for Computational Linguistics (ACL), 2024
Christos Vlachos
Themos Stafylakis
Ion Androutsopoulos
277
2
0
10 Jun 2024
Diverse and Effective Synthetic Data Generation for Adaptable Zero-Shot
  Dialogue State Tracking
Diverse and Effective Synthetic Data Generation for Adaptable Zero-Shot Dialogue State Tracking
James D. Finch
Jinho D. Choi
141
4
0
21 May 2024
Turning Flowchart into Dialog: Augmenting Flowchart-grounded
  Troubleshooting Dialogs via Synthetic Data Generation
Turning Flowchart into Dialog: Augmenting Flowchart-grounded Troubleshooting Dialogs via Synthetic Data GenerationAustralasian Language Technology Association Workshop (ALTA), 2023
Haolan Zhan
Sameen Maruf
Zhuang Li
Yufei Wang
Ingrid Zukerman
Gholamreza Haffari
151
1
0
02 May 2023
More Robust Schema-Guided Dialogue State Tracking via Tree-Based
  Paraphrase Ranking
More Robust Schema-Guided Dialogue State Tracking via Tree-Based Paraphrase RankingFindings (Findings), 2023
Alexandru Coca
Bo-Hsiang Tseng
Weizhe Lin
Bill Byrne
133
3
0
17 Mar 2023
AUGNLG: Few-shot Natural Language Generation using Self-trained Data
  Augmentation
AUGNLG: Few-shot Natural Language Generation using Self-trained Data AugmentationAnnual Meeting of the Association for Computational Linguistics (ACL), 2021
Xinnuo Xu
Guoyin Wang
Young-Bum Kim
Sungjin Lee
138
33
0
10 Jun 2021
A Survey of Data Augmentation Approaches for NLP
A Survey of Data Augmentation Approaches for NLPFindings (Findings), 2021
Steven Y. Feng
Varun Gangal
Jason W. Wei
Sarath Chandar
Soroush Vosoughi
Teruko Mitamura
Eduard H. Hovy
AIMat
580
895
0
07 May 2021
N-Shot Learning for Augmenting Task-Oriented Dialogue State Tracking
N-Shot Learning for Augmenting Task-Oriented Dialogue State TrackingFindings (Findings), 2021
Taha İbrahim Aksu
Zhengyuan Liu
Min-Yen Kan
Nancy F. Chen
214
9
0
27 Feb 2021
Data Augmentation for Spoken Language Understanding via Pretrained
  Language Models
Data Augmentation for Spoken Language Understanding via Pretrained Language Models
Baolin Peng
Chenguang Zhu
Michael Zeng
Jianfeng Gao
161
26
0
29 Apr 2020
1