Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1912.02592
Cited By
ASTRA: High Throughput 3PC over Rings with Application to Secure Prediction
5 December 2019
Harsh Chaudhari
Ashish Choudhury
A. Patra
Ajith Suresh
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"ASTRA: High Throughput 3PC over Rings with Application to Secure Prediction"
32 / 32 papers shown
Title
The Communication-Friendly Privacy-Preserving Machine Learning against Malicious Adversaries
Tianpei Lu
Bingsheng Zhang
Lichun Li
Kui Ren
28
0
0
14 Nov 2024
Online Efficient Secure Logistic Regression based on Function Secret Sharing
Jing Liu
Jamie Cui
Cen Chen
36
5
0
18 Sep 2023
Bicoptor 2.0: Addressing Challenges in Probabilistic Truncation for Enhanced Privacy-Preserving Machine Learning
Lijing Zhou
Qingrui Song
Su Zhang
Ziyu Wang
Xianggui Wang
Yong-Lu Li
67
4
0
10 Sep 2023
Approximating ReLU on a Reduced Ring for Efficient MPC-based Private Inference
Kiwan Maeng
G. E. Suh
52
2
0
09 Sep 2023
ExTRUST: Reducing Exploit Stockpiles with a Privacy-Preserving Depletion System for Inter-State Relationships
Thomas Reinhold
Philip D. . Kuehn
Daniel Gunther
T. Schneider
Christian A. Reuter
41
1
0
01 Jun 2023
A Survey of Trustworthy Federated Learning with Perspectives on Security, Robustness, and Privacy
Yifei Zhang
Dun Zeng
Jinglong Luo
Zenglin Xu
Irwin King
FedML
156
49
0
21 Feb 2023
WW-FL: Secure and Private Large-Scale Federated Learning
F. Marx
T. Schneider
Ajith Suresh
Tobias Wehrle
Christian Weinert
Hossein Yalame
FedML
60
2
0
20 Feb 2023
Efficient Privacy-Preserving Machine Learning with Lightweight Trusted Hardware
Pengzhi Huang
Thang Hoang
Yueying Li
Elaine Shi
G. E. Suh
55
3
0
18 Oct 2022
ScionFL: Efficient and Robust Secure Quantized Aggregation
Y. Ben-Itzhak
Helen Mollering
Benny Pinkas
T. Schneider
Ajith Suresh
Oleksandr Tkachenko
S. Vargaftik
Christian Weinert
Hossein Yalame
Avishay Yanai
64
7
0
13 Oct 2022
Bicoptor: Two-round Secure Three-party Non-linear Computation without Preprocessing for Privacy-preserving Machine Learning
Lijing Zhou
Ziyu Wang
Hongrui Cui
Qingrui Song
Yu Yu
102
13
0
05 Oct 2022
Characterizing and Optimizing End-to-End Systems for Private Inference
Karthik Garimella
Zahra Ghodsi
N. Jha
S. Garg
Brandon Reagen
80
25
0
14 Jul 2022
MPClan: Protocol Suite for Privacy-Conscious Computations
Nishat Koti
S. Patil
A. Patra
Ajith Suresh
49
18
0
24 Jun 2022
Privacy-Preserving Epidemiological Modeling on Mobile Graphs
Daniel Gunther
Marco Holz
B. Judkewitz
Helen Mollering
Benny Pinkas
T. Schneider
Ajith Suresh
100
4
0
01 Jun 2022
SafeNet: The Unreasonable Effectiveness of Ensembles in Private Collaborative Learning
Harsh Chaudhari
Matthew Jagielski
Alina Oprea
72
7
0
20 May 2022
SPIKE: Secure and Private Investigation of the Kidney Exchange problem
T. Birka
K. Hamacher
Tobias Kussel
Helen Mollering
T. Schneider
21
4
0
21 Apr 2022
SecGNN: Privacy-Preserving Graph Neural Network Training and Inference as a Cloud Service
Songlei Wang
Yifeng Zheng
Xiaohua Jia
GNN
90
25
0
16 Feb 2022
ABG: A Multi-Party Mixed Protocol Framework for Privacy-Preserving Cooperative Learning
Hao Wang
Zhi Li
Chunpeng Ge
W. Susilo
FedML
32
0
0
07 Feb 2022
CryptoNite: Revealing the Pitfalls of End-to-End Private Inference at Scale
Karthik Garimella
N. Jha
Zahra Ghodsi
S. Garg
Brandon Reagen
70
3
0
04 Nov 2021
SoK: Machine Learning Governance
Varun Chandrasekaran
Hengrui Jia
Anvith Thudi
Adelin Travers
Mohammad Yaghini
Nicolas Papernot
137
16
0
20 Sep 2021
CrypTen: Secure Multi-Party Computation Meets Machine Learning
Brian Knott
Shobha Venkataraman
Awni Y. Hannun
Shubho Sengupta
Mark Ibrahim
Laurens van der Maaten
110
364
0
02 Sep 2021
Towards Secure and Practical Machine Learning via Secret Sharing and Random Permutation
Fei Zheng
Chaochao Chen
Xiaolin Zheng
Mingjie Zhu
FedML
40
21
0
17 Aug 2021
Sisyphus: A Cautionary Tale of Using Low-Degree Polynomial Activations in Privacy-Preserving Deep Learning
Karthik Garimella
N. Jha
Brandon Reagen
92
19
0
26 Jul 2021
Tetrad: Actively Secure 4PC for Secure Training and Inference
Nishat Koti
A. Patra
Rahul Rachuri
Ajith Suresh
70
72
0
05 Jun 2021
Adam in Private: Secure and Fast Training of Deep Neural Networks with Adaptive Moment Estimation
Nuttapong Attrapadung
Koki Hamada
Dai Ikarashi
Ryo Kikuchi
Takahiro Matsuda
Ibuki Mishina
Hiraku Morita
Jacob C. N. Schuldt
57
27
0
04 Jun 2021
CryptGPU: Fast Privacy-Preserving Machine Learning on the GPU
Sijun Tan
Brian Knott
Yuan Tian
David J. Wu
BDL
FedML
106
193
0
22 Apr 2021
Secrecy: Secure collaborative analytics on secret-shared data
J. Liagouris
Vasiliki Kalavri
Muhammad Faisal
Mayank Varia
57
19
0
01 Feb 2021
SoK: Training Machine Learning Models over Multiple Sources with Privacy Preservation
Lushan Song
Guopeng Lin
Jiaxuan Wang
Haoqi Wu
Wenqiang Ruan
Weili Han
145
9
0
06 Dec 2020
SWIFT: Super-fast and Robust Privacy-Preserving Machine Learning
Nishat Koti
Mahak Pancholi
A. Patra
Ajith Suresh
83
146
0
20 May 2020
BLAZE: Blazing Fast Privacy-Preserving Machine Learning
A. Patra
Ajith Suresh
75
200
0
18 May 2020
FALCON: Honest-Majority Maliciously Secure Framework for Private Deep Learning
Sameer Wagh
Shruti Tople
Fabrice Benhamouda
E. Kushilevitz
Prateek Mittal
T. Rabin
FedML
95
303
0
05 Apr 2020
Trident: Efficient 4PC Framework for Privacy Preserving Machine Learning
Harsh Chaudhari
Rahul Rachuri
Ajith Suresh
108
214
0
05 Dec 2019
CrypTFlow: Secure TensorFlow Inference
Nishant Kumar
Mayank Rathee
Nishanth Chandran
Divya Gupta
Aseem Rastogi
Rahul Sharma
156
244
0
16 Sep 2019
1