Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1912.03549
Cited By
v1
v2 (latest)
lgpr: An interpretable nonparametric method for inferring covariate effects from longitudinal data
7 December 2019
Juho Timonen
Henrik Mannerstrom
Aki Vehtari
Harri Lähdesmäki
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"lgpr: An interpretable nonparametric method for inferring covariate effects from longitudinal data"
4 / 4 papers shown
Title
Computationally efficient multi-level Gaussian process regression for functional data observed under completely or partially regular sampling designs
Adam Gorm Hoffmann
C. T. Ekstrøm
Andreas Kryger Jensen
41
0
0
19 Jun 2024
Improving Neural Additive Models with Bayesian Principles
Kouroche Bouchiat
Alexander Immer
Hugo Yèche
Gunnar Rätsch
Vincent Fortuin
BDL
MedIm
105
6
0
26 May 2023
Additive Gaussian Processes Revisited
Xiaoyu Lu
A. Boukouvalas
J. Hensman
54
23
0
20 Jun 2022
Hierarchical Gaussian Processes with Wasserstein-2 Kernels
S. Popescu
D. Sharp
James H. Cole
Ben Glocker
74
5
0
28 Oct 2020
1