ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.06166
  4. Cited By
ABOUT ML: Annotation and Benchmarking on Understanding and Transparency
  of Machine Learning Lifecycles

ABOUT ML: Annotation and Benchmarking on Understanding and Transparency of Machine Learning Lifecycles

12 December 2019
Inioluwa Deborah Raji
Jingyi Yang
ArXivPDFHTML

Papers citing "ABOUT ML: Annotation and Benchmarking on Understanding and Transparency of Machine Learning Lifecycles"

7 / 7 papers shown
Title
Toward an Evaluation Science for Generative AI Systems
Laura Weidinger
Deb Raji
Hanna M. Wallach
Margaret Mitchell
Angelina Wang
Olawale Salaudeen
Rishi Bommasani
Sayash Kapoor
Deep Ganguli
Sanmi Koyejo
EGVM
ELM
65
4
0
07 Mar 2025
What's documented in AI? Systematic Analysis of 32K AI Model Cards
What's documented in AI? Systematic Analysis of 32K AI Model Cards
Weixin Liang
Nazneen Rajani
Xinyu Yang
Ezinwanne Ozoani
Eric Wu
Yiqun Chen
D. Smith
James Y. Zou
33
15
0
07 Feb 2024
The Fallacy of AI Functionality
The Fallacy of AI Functionality
Inioluwa Deborah Raji
Indra Elizabeth Kumar
Aaron Horowitz
Andrew D. Selbst
15
179
0
20 Jun 2022
Evaluating a Methodology for Increasing AI Transparency: A Case Study
Evaluating a Methodology for Increasing AI Transparency: A Case Study
David Piorkowski
John T. Richards
Michael Hind
35
5
0
24 Jan 2022
The Dataset Nutrition Label (2nd Gen): Leveraging Context to Mitigate
  Harms in Artificial Intelligence
The Dataset Nutrition Label (2nd Gen): Leveraging Context to Mitigate Harms in Artificial Intelligence
Kasia Chmielinski
S. Newman
Matt Taylor
Joshua Joseph
Kemi Thomas
Jessica Yurkofsky
Yue Qiu
25
51
0
10 Jan 2022
Trustworthy AI: From Principles to Practices
Trustworthy AI: From Principles to Practices
Bo-wen Li
Peng Qi
Bo Liu
Shuai Di
Jingen Liu
Jiquan Pei
Jinfeng Yi
Bowen Zhou
117
355
0
04 Oct 2021
Improving fairness in machine learning systems: What do industry
  practitioners need?
Improving fairness in machine learning systems: What do industry practitioners need?
Kenneth Holstein
Jennifer Wortman Vaughan
Hal Daumé
Miroslav Dudík
Hanna M. Wallach
FaML
HAI
192
742
0
13 Dec 2018
1