Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1912.08416
Cited By
Benchmarking the Neural Linear Model for Regression
18 December 2019
Sebastian W. Ober
C. Rasmussen
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Benchmarking the Neural Linear Model for Regression"
9 / 9 papers shown
Title
Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood Estimation for Latent Gaussian Models
Alexander Lin
Bahareh Tolooshams
Yves Atchadé
Demba E. Ba
31
1
0
05 Jun 2023
Do Bayesian Neural Networks Need To Be Fully Stochastic?
Mrinank Sharma
Sebastian Farquhar
Eric T. Nalisnick
Tom Rainforth
BDL
18
52
0
11 Nov 2022
Trust Your Robots! Predictive Uncertainty Estimation of Neural Networks with Sparse Gaussian Processes
Jongseo Lee
Jianxiang Feng
Matthias Humt
M. Müller
Rudolph Triebel
UQCV
48
21
0
20 Sep 2021
Bayesian Deep Basis Fitting for Depth Completion with Uncertainty
Chao Qu
Wenxin Liu
Camillo J. Taylor
UQCV
BDL
22
31
0
29 Mar 2021
The Promises and Pitfalls of Deep Kernel Learning
Sebastian W. Ober
C. Rasmussen
Mark van der Wilk
UQCV
BDL
21
107
0
24 Feb 2021
Uncertainty-Aware (UNA) Bases for Deep Bayesian Regression Using Multi-Headed Auxiliary Networks
Sujay Thakur
Cooper Lorsung
Yaniv Yacoby
Finale Doshi-Velez
Weiwei Pan
BDL
UQCV
25
4
0
21 Jun 2020
Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks
Agustinus Kristiadi
Matthias Hein
Philipp Hennig
BDL
UQCV
33
277
0
24 Feb 2020
Marginally-calibrated deep distributional regression
Nadja Klein
David J. Nott
M. Smith
UQCV
32
14
0
26 Aug 2019
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,138
0
06 Jun 2015
1