ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.11940
  4. Cited By
Towards Better Understanding of Adaptive Gradient Algorithms in
  Generative Adversarial Nets

Towards Better Understanding of Adaptive Gradient Algorithms in Generative Adversarial Nets

26 December 2019
Mingrui Liu
Youssef Mroueh
Jerret Ross
Wei Zhang
Xiaodong Cui
Payel Das
Tianbao Yang
    ODL
ArXivPDFHTML

Papers citing "Towards Better Understanding of Adaptive Gradient Algorithms in Generative Adversarial Nets"

16 / 16 papers shown
Title
On Convergence of Adam for Stochastic Optimization under Relaxed Assumptions
On Convergence of Adam for Stochastic Optimization under Relaxed Assumptions
Yusu Hong
Junhong Lin
38
10
0
06 Feb 2024
Federated Multi-Sequence Stochastic Approximation with Local
  Hypergradient Estimation
Federated Multi-Sequence Stochastic Approximation with Local Hypergradient Estimation
Davoud Ataee Tarzanagh
Mingchen Li
Pranay Sharma
Samet Oymak
24
0
0
02 Jun 2023
Single-Call Stochastic Extragradient Methods for Structured Non-monotone
  Variational Inequalities: Improved Analysis under Weaker Conditions
Single-Call Stochastic Extragradient Methods for Structured Non-monotone Variational Inequalities: Improved Analysis under Weaker Conditions
S. Choudhury
Eduard A. Gorbunov
Nicolas Loizou
25
13
0
27 Feb 2023
Similarity, Compression and Local Steps: Three Pillars of Efficient
  Communications for Distributed Variational Inequalities
Similarity, Compression and Local Steps: Three Pillars of Efficient Communications for Distributed Variational Inequalities
Aleksandr Beznosikov
Martin Takáč
Alexander Gasnikov
21
10
0
15 Feb 2023
Accelerated Single-Call Methods for Constrained Min-Max Optimization
Accelerated Single-Call Methods for Constrained Min-Max Optimization
Yang Cai
Weiqiang Zheng
19
30
0
06 Oct 2022
Smooth Monotone Stochastic Variational Inequalities and Saddle Point
  Problems: A Survey
Smooth Monotone Stochastic Variational Inequalities and Saddle Point Problems: A Survey
Aleksandr Beznosikov
Boris Polyak
Eduard A. Gorbunov
D. Kovalev
Alexander Gasnikov
32
31
0
29 Aug 2022
On Scaled Methods for Saddle Point Problems
On Scaled Methods for Saddle Point Problems
Aleksandr Beznosikov
Aibek Alanov
D. Kovalev
Martin Takáč
Alexander Gasnikov
22
4
0
16 Jun 2022
Nest Your Adaptive Algorithm for Parameter-Agnostic Nonconvex Minimax
  Optimization
Nest Your Adaptive Algorithm for Parameter-Agnostic Nonconvex Minimax Optimization
Junchi Yang
Xiang Li
Niao He
ODL
27
22
0
01 Jun 2022
FedNest: Federated Bilevel, Minimax, and Compositional Optimization
FedNest: Federated Bilevel, Minimax, and Compositional Optimization
Davoud Ataee Tarzanagh
Mingchen Li
Christos Thrampoulidis
Samet Oymak
FedML
38
73
0
04 May 2022
Tighter Analysis of Alternating Stochastic Gradient Method for
  Stochastic Nested Problems
Tighter Analysis of Alternating Stochastic Gradient Method for Stochastic Nested Problems
Tianyi Chen
Yuejiao Sun
W. Yin
24
33
0
25 Jun 2021
Decentralized Local Stochastic Extra-Gradient for Variational
  Inequalities
Decentralized Local Stochastic Extra-Gradient for Variational Inequalities
Aleksandr Beznosikov
Pavel Dvurechensky
Anastasia Koloskova
V. Samokhin
Sebastian U. Stich
Alexander Gasnikov
24
43
0
15 Jun 2021
A Decentralized Adaptive Momentum Method for Solving a Class of Min-Max
  Optimization Problems
A Decentralized Adaptive Momentum Method for Solving a Class of Min-Max Optimization Problems
Babak Barazandeh
Tianjian Huang
George Michailidis
19
12
0
10 Jun 2021
Local Stochastic Gradient Descent Ascent: Convergence Analysis and
  Communication Efficiency
Local Stochastic Gradient Descent Ascent: Convergence Analysis and Communication Efficiency
Yuyang Deng
M. Mahdavi
19
58
0
25 Feb 2021
A Convergent and Dimension-Independent Min-Max Optimization Algorithm
A Convergent and Dimension-Independent Min-Max Optimization Algorithm
Vijay Keswani
Oren Mangoubi
Sushant Sachdeva
Nisheeth K. Vishnoi
13
1
0
22 Jun 2020
The limits of min-max optimization algorithms: convergence to spurious
  non-critical sets
The limits of min-max optimization algorithms: convergence to spurious non-critical sets
Ya-Ping Hsieh
P. Mertikopoulos
V. Cevher
27
81
0
16 Jun 2020
Closing the Generalization Gap of Adaptive Gradient Methods in Training
  Deep Neural Networks
Closing the Generalization Gap of Adaptive Gradient Methods in Training Deep Neural Networks
Jinghui Chen
Dongruo Zhou
Yiqi Tang
Ziyan Yang
Yuan Cao
Quanquan Gu
ODL
13
192
0
18 Jun 2018
1