Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1912.12976
Cited By
Incorporating physical constraints in a deep probabilistic machine learning framework for coarse-graining dynamical systems
30 December 2019
Sebastian Kaltenbach
P. Koutsourelakis
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Incorporating physical constraints in a deep probabilistic machine learning framework for coarse-graining dynamical systems"
8 / 8 papers shown
Title
Learning to Decouple Complex Systems
Zihan Zhou
Tianshu Yu
BDL
66
4
0
17 Feb 2025
DGNO: A Novel Physics-aware Neural Operator for Solving Forward and Inverse PDE Problems based on Deep, Generative Probabilistic Modeling
Yaohua Zang
P. Koutsourelakis
AI4CE
52
0
0
10 Feb 2025
A Primer on Variational Inference for Physics-Informed Deep Generative Modelling
Alex Glyn-Davies
A. Vadeboncoeur
O. Deniz Akyildiz
Ieva Kazlauskaite
Mark Girolami
PINN
58
0
0
10 Sep 2024
Physics-Aware Neural Implicit Solvers for multiscale, parametric PDEs with applications in heterogeneous media
Matthaios Chatzopoulos
P. Koutsourelakis
AI4CE
29
3
0
29 May 2024
Closure Discovery for Coarse-Grained Partial Differential Equations Using Grid-based Reinforcement Learning
Jan-Philipp von Bassewitz
Sebastian Kaltenbach
P. Koumoutsakos
AI4CE
30
1
0
01 Feb 2024
Predicting and explaining nonlinear material response using deep Physically Guided Neural Networks with Internal Variables
Javier Orera-Echeverria
J. Ayensa-Jiménez
Manuel Doblaré
18
1
0
07 Aug 2023
Physics-enhanced Neural Networks in the Small Data Regime
Jonas Eichelsdörfer
Sebastian Kaltenbach
P. Koutsourelakis
AI4CE
PINN
6
5
0
19 Nov 2021
Physics-Integrated Variational Autoencoders for Robust and Interpretable Generative Modeling
Naoya Takeishi
Alexandros Kalousis
DRL
AI4CE
22
54
0
25 Feb 2021
1