ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.13440
  4. Cited By
Approximate Inference for Fully Bayesian Gaussian Process Regression

Approximate Inference for Fully Bayesian Gaussian Process Regression

31 December 2019
V. Lalchand
C. Rasmussen
    GP
ArXivPDFHTML

Papers citing "Approximate Inference for Fully Bayesian Gaussian Process Regression"

13 / 13 papers shown
Title
Robust Inference of Dynamic Covariance Using Wishart Processes and
  Sequential Monte Carlo
Robust Inference of Dynamic Covariance Using Wishart Processes and Sequential Monte Carlo
Hester Huijsdens
D. Leeftink
Linda Geerligs
Max Hinne
37
0
0
07 Jun 2024
Data-driven Prior Learning for Bayesian Optimisation
Data-driven Prior Learning for Bayesian Optimisation
Sigrid Passano Hellan
Christopher G. Lucas
Nigel H. Goddard
26
0
0
24 Nov 2023
Stochastic stiffness identification and response estimation of
  Timoshenko beams via physics-informed Gaussian processes
Stochastic stiffness identification and response estimation of Timoshenko beams via physics-informed Gaussian processes
Gledson Rodrigo Tondo
Sebastian Rau
I. Kavrakov
Guido Morgenthal
29
6
0
21 Sep 2023
Scalable Bayesian Transformed Gaussian Processes
Scalable Bayesian Transformed Gaussian Processes
Xinran Zhu
Leo Huang
Cameron Ibrahim
E. Lee
D. Bindel
10
1
0
20 Oct 2022
Bayesian Active Learning with Fully Bayesian Gaussian Processes
Bayesian Active Learning with Fully Bayesian Gaussian Processes
Christoffer Riis
Francisco Antunes
F. B. Hüttel
C. L. Azevedo
Francisco Câmara Pereira
GP
11
22
0
20 May 2022
A Bayesian Approach To Graph Partitioning
A Bayesian Approach To Graph Partitioning
Farshad Noravesh
18
0
0
24 Apr 2022
A novel sampler for Gauss-Hermite determinantal point processes with
  application to Monte Carlo integration
A novel sampler for Gauss-Hermite determinantal point processes with application to Monte Carlo integration
Nicholas P. Baskerville
10
0
0
15 Mar 2022
Bayesian Optimisation for Active Monitoring of Air Pollution
Bayesian Optimisation for Active Monitoring of Air Pollution
Sigrid Passano Hellan
Christopher G. Lucas
Nigel H. Goddard
11
10
0
15 Feb 2022
Validating Gaussian Process Models with Simulation-Based Calibration
Validating Gaussian Process Models with Simulation-Based Calibration
John Mcleod
F. Simpson
14
3
0
27 Oct 2021
Efficient reduced-rank methods for Gaussian processes with eigenfunction
  expansions
Efficient reduced-rank methods for Gaussian processes with eigenfunction expansions
P. Greengard
M. O’Neil
30
10
0
12 Aug 2021
The Promises and Pitfalls of Deep Kernel Learning
The Promises and Pitfalls of Deep Kernel Learning
Sebastian W. Ober
C. Rasmussen
Mark van der Wilk
UQCV
BDL
21
107
0
24 Feb 2021
Achieving Robustness to Aleatoric Uncertainty with Heteroscedastic
  Bayesian Optimisation
Achieving Robustness to Aleatoric Uncertainty with Heteroscedastic Bayesian Optimisation
Ryan-Rhys Griffiths
Alexander A. Aldrick
Miguel García-Ortegón
Vidhi R. Lalchand
A. Lee
31
35
0
17 Oct 2019
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
185
3,266
0
09 Jun 2012
1