ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2001.00152
  4. Cited By
On the Improved Rates of Convergence for Matérn-type Kernel Ridge
  Regression, with Application to Calibration of Computer Models

On the Improved Rates of Convergence for Matérn-type Kernel Ridge Regression, with Application to Calibration of Computer Models

1 January 2020
Rui Tuo
Yan Wang
C. F. Jeff Wu
ArXiv (abs)PDFHTML

Papers citing "On the Improved Rates of Convergence for Matérn-type Kernel Ridge Regression, with Application to Calibration of Computer Models"

13 / 13 papers shown
Title
Highly Adaptive Ridge
Highly Adaptive Ridge
Alejandro Schuler
Alexander Hagemeister
Mark van der Laan
236
0
0
03 Oct 2024
Sobolev Calibration of Imperfect Computer Models
Sobolev Calibration of Imperfect Computer Models
Qingwen Zhang
Wenjia Wang
23
0
0
31 Mar 2024
Asymptotic Theory for Linear Functionals of Kernel Ridge Regression
Asymptotic Theory for Linear Functionals of Kernel Ridge Regression
Rui Tuo
Lu Zou
55
0
0
07 Mar 2024
Random Smoothing Regularization in Kernel Gradient Descent Learning
Random Smoothing Regularization in Kernel Gradient Descent Learning
Liang Ding
Tianyang Hu
Jiahan Jiang
Donghao Li
Wei Cao
Yuan Yao
70
6
0
05 May 2023
The Matérn Model: A Journey through Statistics, Numerical Analysis and
  Machine Learning
The Matérn Model: A Journey through Statistics, Numerical Analysis and Machine Learning
Emilio Porcu
M. Bevilacqua
R. Schaback
Chris J. Oates
63
16
0
05 Mar 2023
Asymptotic Bounds for Smoothness Parameter Estimates in Gaussian Process
  Interpolation
Asymptotic Bounds for Smoothness Parameter Estimates in Gaussian Process Interpolation
Toni Karvonen
81
3
0
10 Mar 2022
Smooth Nested Simulation: Bridging Cubic and Square Root Convergence
  Rates in High Dimensions
Smooth Nested Simulation: Bridging Cubic and Square Root Convergence Rates in High Dimensions
Wei Cao
Yanyuan Wang
Xiaowei Zhang
21
5
0
09 Jan 2022
Estimation of the Scale Parameter for a Misspecified Gaussian Process
  Model
Estimation of the Scale Parameter for a Misspecified Gaussian Process Model
Toni Karvonen
59
4
0
06 Oct 2021
Convergence of Gaussian process regression: Optimality, robustness, and
  relationship with kernel ridge regression
Convergence of Gaussian process regression: Optimality, robustness, and relationship with kernel ridge regression
Wei Cao
Bing-Yi Jing
55
6
0
20 Apr 2021
Fast Statistical Leverage Score Approximation in Kernel Ridge Regression
Fast Statistical Leverage Score Approximation in Kernel Ridge Regression
Yifan Chen
Yun Yang
66
16
0
09 Mar 2021
Accumulations of Projections--A Unified Framework for Random Sketches in
  Kernel Ridge Regression
Accumulations of Projections--A Unified Framework for Random Sketches in Kernel Ridge Regression
Yifan Chen
Yun Yang
54
13
0
06 Mar 2021
Sample and Computationally Efficient Stochastic Kriging in High
  Dimensions
Sample and Computationally Efficient Stochastic Kriging in High Dimensions
Liang Ding
Xiaowei Zhang
26
6
0
14 Oct 2020
Maximum likelihood estimation and uncertainty quantification for
  Gaussian process approximation of deterministic functions
Maximum likelihood estimation and uncertainty quantification for Gaussian process approximation of deterministic functions
Toni Karvonen
George Wynne
Filip Tronarp
Chris J. Oates
Simo Särkkä
113
39
0
29 Jan 2020
1