Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2001.02478
Cited By
Questioning the AI: Informing Design Practices for Explainable AI User Experiences
8 January 2020
Q. V. Liao
D. Gruen
Sarah Miller
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Questioning the AI: Informing Design Practices for Explainable AI User Experiences"
40 / 240 papers shown
Title
How to choose an Explainability Method? Towards a Methodical Implementation of XAI in Practice
T. Vermeire
Thibault Laugel
X. Renard
David Martens
Marcin Detyniecki
8
14
0
09 Jul 2021
A Framework of High-Stakes Algorithmic Decision-Making for the Public Sector Developed through a Case Study of Child-Welfare
Devansh Saxena
Karla A. Badillo-Urquiola
Pamela J. Wisniewski
Shion Guha
24
86
0
07 Jul 2021
Multivariate Data Explanation by Jumping Emerging Patterns Visualization
Mário Popolin Neto
F. Paulovich
17
7
0
21 Jun 2021
On the overlooked issue of defining explanation objectives for local-surrogate explainers
Rafael Poyiadzi
X. Renard
Thibault Laugel
Raúl Santos-Rodríguez
Marcin Detyniecki
11
6
0
10 Jun 2021
Designer-User Communication for XAI: An epistemological approach to discuss XAI design
J. Ferreira
Mateus de Souza Monteiro
11
4
0
17 May 2021
LEx: A Framework for Operationalising Layers of Machine Learning Explanations
Ronal Singh
Upol Ehsan
M. Cheong
Mark O. Riedl
Tim Miller
11
3
0
15 Apr 2021
Perfection Not Required? Human-AI Partnerships in Code Translation
Justin D. Weisz
Michael J. Muller
Stephanie Houde
John T. Richards
Steven I. Ross
Fernando Martinez
Mayank Agarwal
Kartik Talamadupula
20
125
0
08 Apr 2021
Question-Driven Design Process for Explainable AI User Experiences
Q. V. Liao
Milena Pribić
Jaesik Han
Sarah Miller
Daby M. Sow
11
52
0
08 Apr 2021
Situated Case Studies for a Human-Centered Design of Explanation User Interfaces
Claudia Muller-Birn
Katrin Glinka
Peter Sorries
Michael Tebbe
S. Michl
9
2
0
29 Mar 2021
A Multistakeholder Approach Towards Evaluating AI Transparency Mechanisms
Ana Lucic
Madhulika Srikumar
Umang Bhatt
Alice Xiang
Ankur Taly
Q. V. Liao
Maarten de Rijke
13
5
0
27 Mar 2021
Explaining the Road Not Taken
Hua Shen
Ting-Hao 'Kenneth' Huang
FAtt
XAI
16
9
0
27 Mar 2021
Trustworthy Transparency by Design
Valentin Zieglmeier
A. Pretschner
11
16
0
19 Mar 2021
Intuitively Assessing ML Model Reliability through Example-Based Explanations and Editing Model Inputs
Harini Suresh
Kathleen M. Lewis
John Guttag
Arvind Satyanarayan
FAtt
32
25
0
17 Feb 2021
EUCA: the End-User-Centered Explainable AI Framework
Weina Jin
Jianyu Fan
D. Gromala
Philippe Pasquier
Ghassan Hamarneh
40
22
0
04 Feb 2021
Directive Explanations for Actionable Explainability in Machine Learning Applications
Ronal Singh
Paul Dourish
Piers Howe
Tim Miller
L. Sonenberg
Eduardo Velloso
F. Vetere
11
32
0
03 Feb 2021
Beyond Expertise and Roles: A Framework to Characterize the Stakeholders of Interpretable Machine Learning and their Needs
Harini Suresh
Steven R. Gomez
K. Nam
Arvind Satyanarayan
27
124
0
24 Jan 2021
Expanding Explainability: Towards Social Transparency in AI systems
Upol Ehsan
Q. V. Liao
Michael J. Muller
Mark O. Riedl
Justin D. Weisz
36
389
0
12 Jan 2021
Fits and Starts: Enterprise Use of AutoML and the Role of Humans in the Loop
Anamaria Crisan
Brittany Fiore-Gartland
14
50
0
12 Jan 2021
Machine Learning Uncertainty as a Design Material: A Post-Phenomenological Inquiry
J. Benjamin
Arne Berger
Nick Merrill
James Pierce
31
91
0
11 Jan 2021
Explainable Artificial Intelligence (XAI): An Engineering Perspective
F. Hussain
R. Hussain
E. Hossain
XAI
13
26
0
10 Jan 2021
How Much Automation Does a Data Scientist Want?
Dakuo Wang
Q. V. Liao
Yunfeng Zhang
Udayan Khurana
Horst Samulowitz
Soya Park
Michael J. Muller
Lisa Amini
AI4CE
27
54
0
07 Jan 2021
QUACKIE: A NLP Classification Task With Ground Truth Explanations
Yves Rychener
X. Renard
Djamé Seddah
P. Frossard
Marcin Detyniecki
23
3
0
24 Dec 2020
Reviewing the Need for Explainable Artificial Intelligence (xAI)
Julie Gerlings
Arisa Shollo
Ioanna D. Constantiou
14
73
0
02 Dec 2020
Towards Unifying Feature Attribution and Counterfactual Explanations: Different Means to the Same End
R. Mothilal
Divyat Mahajan
Chenhao Tan
Amit Sharma
FAtt
CML
12
98
0
10 Nov 2020
Explanation Ontology: A Model of Explanations for User-Centered AI
Shruthi Chari
O. Seneviratne
Daniel Gruen
Morgan Foreman
Amar K. Das
D. McGuinness
XAI
6
52
0
04 Oct 2020
Explanation Ontology in Action: A Clinical Use-Case
Shruthi Chari
O. Seneviratne
Daniel Gruen
Morgan Foreman
Amar K. Das
D. McGuinness
6
1
0
04 Oct 2020
Survey of explainable machine learning with visual and granular methods beyond quasi-explanations
Boris Kovalerchuk
M. Ahmad
University of Washington Tacoma
6
42
0
21 Sep 2020
Attention Flows: Analyzing and Comparing Attention Mechanisms in Language Models
Joseph F DeRose
Jiayao Wang
M. Berger
11
83
0
03 Sep 2020
Explainable Empirical Risk Minimization
Linli Zhang
Georgios Karakasidis
Arina Odnoblyudova
Leyla Dogruel
Alex Jung
4
5
0
03 Sep 2020
An Interpretable Probabilistic Approach for Demystifying Black-box Predictive Models
Catarina Moreira
Yu-Liang Chou
M. Velmurugan
Chun Ouyang
Renuka Sindhgatta
P. Bruza
19
57
0
21 Jul 2020
Melody: Generating and Visualizing Machine Learning Model Summary to Understand Data and Classifiers Together
G. Chan
E. Bertini
L. G. Nonato
Brian Barr
Claudio T. Silva
13
17
0
21 Jul 2020
Drug discovery with explainable artificial intelligence
José Jiménez-Luna
F. Grisoni
G. Schneider
25
623
0
01 Jul 2020
Explainable Matrix -- Visualization for Global and Local Interpretability of Random Forest Classification Ensembles
Mário Popolin Neto
F. Paulovich
FAtt
19
86
0
08 May 2020
Explainable Active Learning (XAL): An Empirical Study of How Local Explanations Impact Annotator Experience
Bhavya Ghai
Q. V. Liao
Yunfeng Zhang
Rachel K. E. Bellamy
Klaus Mueller
8
29
0
24 Jan 2020
How do Data Science Workers Collaborate? Roles, Workflows, and Tools
Amy X. Zhang
Michael J. Muller
Dakuo Wang
FedML
AI4CE
14
256
0
18 Jan 2020
Trust in AutoML: Exploring Information Needs for Establishing Trust in Automated Machine Learning Systems
Jaimie Drozdal
Justin D. Weisz
Dakuo Wang
Gaurav Dass
Bingsheng Yao
Changruo Zhao
Michael J. Muller
Lin Ju
Hui Su
29
124
0
17 Jan 2020
AutoAIViz: Opening the Blackbox of Automated Artificial Intelligence with Conditional Parallel Coordinates
D. Weidele
Justin D. Weisz
Eno Oduor
Michael J. Muller
Josh Andres
Alexander G. Gray
Dakuo Wang
41
53
0
13 Dec 2019
Improving fairness in machine learning systems: What do industry practitioners need?
Kenneth Holstein
Jennifer Wortman Vaughan
Hal Daumé
Miroslav Dudík
Hanna M. Wallach
FaML
HAI
192
739
0
13 Dec 2018
Manipulating and Measuring Model Interpretability
Forough Poursabzi-Sangdeh
D. Goldstein
Jake M. Hofman
Jennifer Wortman Vaughan
Hanna M. Wallach
21
682
0
21 Feb 2018
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
225
3,672
0
28 Feb 2017
Previous
1
2
3
4
5