Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2001.02992
Cited By
Poly-time universality and limitations of deep learning
7 January 2020
Emmanuel Abbe
Colin Sandon
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Poly-time universality and limitations of deep learning"
17 / 17 papers shown
Title
From Sparse Dependence to Sparse Attention: Unveiling How Chain-of-Thought Enhances Transformer Sample Efficiency
Kaiyue Wen
Huaqing Zhang
Hongzhou Lin
Jingzhao Zhang
MoE
LRM
175
7
0
07 Oct 2024
How Neural Networks Learn the Support is an Implicit Regularization Effect of SGD
Pierfrancesco Beneventano
Andrea Pinto
Tomaso A. Poggio
MLT
56
1
0
17 Jun 2024
Butterfly Effects of SGD Noise: Error Amplification in Behavior Cloning and Autoregression
Adam Block
Dylan J. Foster
Akshay Krishnamurthy
Max Simchowitz
Cyril Zhang
75
7
0
17 Oct 2023
Practically Solving LPN in High Noise Regimes Faster Using Neural Networks
Haozhe Jiang
Kaiyue Wen
Yi-Long Chen
52
0
0
14 Mar 2023
On the non-universality of deep learning: quantifying the cost of symmetry
Emmanuel Abbe
Enric Boix-Adserà
FedML
MLT
80
19
0
05 Aug 2022
Hidden Progress in Deep Learning: SGD Learns Parities Near the Computational Limit
Boaz Barak
Benjamin L. Edelman
Surbhi Goel
Sham Kakade
Eran Malach
Cyril Zhang
114
133
0
18 Jul 2022
Intrinsic dimensionality and generalization properties of the
R
\mathcal{R}
R
-norm inductive bias
Navid Ardeshir
Daniel J. Hsu
Clayton Sanford
CML
AI4CE
113
6
0
10 Jun 2022
The Theoretical Expressiveness of Maxpooling
Kyle Matoba
Nikolaos Dimitriadis
Franccois Fleuret
FAtt
52
3
0
02 Mar 2022
An initial alignment between neural network and target is needed for gradient descent to learn
Emmanuel Abbe
Elisabetta Cornacchia
Jan Hązła
Christopher Marquis
117
16
0
25 Feb 2022
The effective noise of Stochastic Gradient Descent
Francesca Mignacco
Pierfrancesco Urbani
69
39
0
20 Dec 2021
Regularization by Misclassification in ReLU Neural Networks
Elisabetta Cornacchia
Jan Hązła
Ido Nachum
Amir Yehudayoff
NoLa
59
2
0
03 Nov 2021
On the Cryptographic Hardness of Learning Single Periodic Neurons
M. Song
Ilias Zadik
Joan Bruna
AAML
68
28
0
20 Jun 2021
Stochasticity helps to navigate rough landscapes: comparing gradient-descent-based algorithms in the phase retrieval problem
Francesca Mignacco
Pierfrancesco Urbani
Lenka Zdeborová
85
36
0
08 Mar 2021
Quantifying the Benefit of Using Differentiable Learning over Tangent Kernels
Eran Malach
Pritish Kamath
Emmanuel Abbe
Nathan Srebro
80
39
0
01 Mar 2021
The Connection Between Approximation, Depth Separation and Learnability in Neural Networks
Eran Malach
Gilad Yehudai
Shai Shalev-Shwartz
Ohad Shamir
87
20
0
31 Jan 2021
Towards a Mathematical Understanding of Neural Network-Based Machine Learning: what we know and what we don't
E. Weinan
Chao Ma
Stephan Wojtowytsch
Lei Wu
AI4CE
125
134
0
22 Sep 2020
Superpolynomial Lower Bounds for Learning One-Layer Neural Networks using Gradient Descent
Surbhi Goel
Aravind Gollakota
Zhihan Jin
Sushrut Karmalkar
Adam R. Klivans
MLT
ODL
75
72
0
22 Jun 2020
1