Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2001.03689
Cited By
Calibrate, Emulate, Sample
10 January 2020
Emmet Cleary
A. Garbuno-Iñigo
Shiwei Lan
T. Schneider
Andrew M. Stuart
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Calibrate, Emulate, Sample"
29 / 29 papers shown
Title
Efficient Deconvolution in Populational Inverse Problems
Arnaud Vadeboncoeur
Mark Girolami
Andrew M. Stuart
42
0
0
26 May 2025
A survey of Monte Carlo methods for noisy and costly densities with application to reinforcement learning and ABC
F. Llorente
Luca Martino
Jesse Read
D. Delgado
OffRL
165
14
0
03 Jan 2025
A Primer on Variational Inference for Physics-Informed Deep Generative Modelling
Alex Glyn-Davies
Arnaud Vadeboncoeur
O. Deniz Akyildiz
Ieva Kazlauskaite
Mark Girolami
PINN
139
0
0
10 Sep 2024
An adaptive Gaussian process method for multi-modal Bayesian inverse problems
Zhihang Xu
Xiaoyu Zhu
Daoji Li
Qifeng Liao
23
0
0
05 Sep 2024
Hyperparameter Optimization for Randomized Algorithms: A Case Study on Random Features
Oliver R. A. Dunbar
Nicholas H. Nelsen
Maya Mutic
147
7
0
30 Jun 2024
FUSE: Fast Unified Simulation and Estimation for PDEs
Levi E. Lingsch
Dana Grund
Siddhartha Mishra
Georgios Kissas
AI4CE
93
2
0
23 May 2024
Enhancing Gaussian Process Surrogates for Optimization and Posterior Approximation via Random Exploration
Hwanwoo Kim
D. Sanz-Alonso
79
3
0
30 Jan 2024
Learning About Structural Errors in Models of Complex Dynamical Systems
Jin-Long Wu
Matthew E. Levine
Tapio Schneider
Andrew M. Stuart
AI4CE
82
18
0
29 Dec 2023
Scaling Up Bayesian Neural Networks with Neural Networks
Zahra Moslemi
Yang Meng
Shiwei Lan
Babak Shahbaba
BDL
73
1
0
19 Dec 2023
Uncertainty Quantification and Propagation in Surrogate-based Bayesian Inference
Philipp Reiser
Javier Enrique Aguilar
A. Guthke
Paul-Christian Bürkner
151
3
0
08 Dec 2023
Next-Generation Earth System Models: Towards Reliable Hybrid Models for Weather and Climate Applications
Tom Beucler
Erwan Koch
Sven Kotlarski
D. Leutwyler
Adrien Michel
Jonathan Koh
AI4Cl
35
2
0
22 Nov 2023
Analysis of a Computational Framework for Bayesian Inverse Problems: Ensemble Kalman Updates and MAP Estimators Under Mesh Refinement
D. Sanz-Alonso
Nathan Waniorek
83
5
0
19 Apr 2023
Solving High-Dimensional Inverse Problems with Auxiliary Uncertainty via Operator Learning with Limited Data
Joseph L. Hart
Mamikon A. Gulian
Indu Manickam
L. Swiler
60
8
0
20 Mar 2023
Introduction To Gaussian Process Regression In Bayesian Inverse Problems, With New ResultsOn Experimental Design For Weighted Error Measures
T. Helin
Andrew M. Stuart
A. Teckentrup
K. Zygalakis
62
5
0
09 Feb 2023
Embed and Emulate: Learning to estimate parameters of dynamical systems with uncertainty quantification
Ruoxi Jiang
Rebecca Willett
61
7
0
03 Nov 2022
Semi-automatic tuning of coupled climate models with multiple intrinsic timescales: lessons learned from the Lorenz96 model
Redouane Lguensat
Julie Deshayes
Homer Durand
Venkatramani Balaji
96
4
0
11 Aug 2022
Randomized Maximum Likelihood via High-Dimensional Bayesian Optimization
Valentin Breaz
Richard D. Wilkinson
65
0
0
17 Apr 2022
Localization in Ensemble Kalman inversion
Xin T. Tong
Matthias Morzfeld
89
21
0
26 Jan 2022
An efficient estimation of time-varying parameters of dynamic models by combining offline batch optimization and online data assimilation
Y. Sawada
46
2
0
24 Oct 2021
Combining machine learning and data assimilation to forecast dynamical systems from noisy partial observations
Georg Gottwald
Sebastian Reich
AI4CE
94
38
0
08 Aug 2021
Bridging observation, theory and numerical simulation of the ocean using Machine Learning
Maike Sonnewald
Redouane Lguensat
Daniel C. Jones
P. Dueben
J. Brajard
Venkatramani Balaji
AI4Cl
AI4CE
96
101
0
26 Apr 2021
Approximate Bayesian inference from noisy likelihoods with Gaussian process emulated MCMC
Marko Jarvenpaa
J. Corander
61
5
0
08 Apr 2021
Ensemble Inference Methods for Models With Noisy and Expensive Likelihoods
Oliver R. A. Dunbar
Andrew B. Duncan
Andrew M. Stuart
Marie-Therese Wolfram
82
27
0
07 Apr 2021
Scaling Up Bayesian Uncertainty Quantification for Inverse Problems using Deep Neural Networks
Shiwei Lan
Shuyi Li
Babak Shahbaba
UQCV
BDL
84
16
0
11 Jan 2021
Calibration and Uncertainty Quantification of Convective Parameters in an Idealized GCM
Oliver R. A. Dunbar
A. Garbuno-Iñigo
T. Schneider
Andrew M. Stuart
86
60
0
24 Dec 2020
Deep Importance Sampling based on Regression for Model Inversion and Emulation
F. Llorente
Luca Martino
D. Delgado
G. Camps-Valls
86
19
0
20 Oct 2020
Kernel-based parameter estimation of dynamical systems with unknown observation functions
Ofir Lindenbaum
A. Sagiv
Zhengchao Wan
Ronen Talmon
40
5
0
09 Sep 2020
Probabilistic Gradients for Fast Calibration of Differential Equation Models
Jon Cockayne
Andrew B. Duncan
63
5
0
03 Sep 2020
Learning Stochastic Closures Using Ensemble Kalman Inversion
T. Schneider
Andrew M. Stuart
Jin-Long Wu
101
40
0
17 Apr 2020
1