Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2001.04263
Cited By
v1
v2
v3 (latest)
Deep learning to discover and predict dynamics on an inertial manifold
20 December 2019
Alec J. Linot
M. Graham
AI4CE
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Deep learning to discover and predict dynamics on an inertial manifold"
35 / 35 papers shown
Title
Deep Learning of the Evolution Operator Enables Forecasting of Out-of-Training Dynamics in Chaotic Systems
Ira J. S. Shokar
Peter H. Haynes
R. Kerswell
AI4TS
86
1
0
28 Feb 2025
Learning to Decouple Complex Systems
Zihan Zhou
Tianshu Yu
BDL
151
4
0
17 Feb 2025
Inferring stability properties of chaotic systems on autoencoders' latent spaces
Elise Özalp
Luca Magri
79
1
0
23 Oct 2024
Stability analysis of chaotic systems in latent spaces
Elise Özalp
Luca Magri
89
3
0
01 Oct 2024
On instabilities in neural network-based physics simulators
Daniel Floryan
AI4CE
73
2
0
18 Jun 2024
Data-driven low-dimensional model of a sedimenting flexible fiber
Andrew J Fox
Michael D. Graham
AI4CE
70
2
0
16 May 2024
Generative Learning for Forecasting the Dynamics of Complex Systems
Han Gao
Sebastian Kaltenbach
Petros Koumoutsakos
AI4TS
AI4CE
123
8
0
27 Feb 2024
A Novel Paradigm in Solving Multiscale Problems
Jing Wang
Zheng Li
Pengyu Lai
Rui Wang
Di Yang
Dewu Yang
Hui Xu
Wenquan Tao
AI4CE
82
0
0
07 Feb 2024
RefreshNet: Learning Multiscale Dynamics through Hierarchical Refreshing
Junaid Farooq
Danish Rafiq
Pantelis R. Vlachas
M. A. Bazaz
59
0
0
24 Jan 2024
Building symmetries into data-driven manifold dynamics models for complex flows: application to two-dimensional Kolmogorov flow
Carlos E. Pérez De Jesús
Alec J. Linot
Michael D. Graham
AI4CE
94
2
0
15 Dec 2023
Generative learning for nonlinear dynamics
William Gilpin
AI4CE
PINN
123
27
0
07 Nov 2023
Stochastic Latent Transformer: Efficient Modelling of Stochastically Forced Zonal Jets
Ira J. S. Shokar
R. Kerswell
Peter H. Haynes
80
5
0
25 Oct 2023
Nonlinear dimensionality reduction then and now: AIMs for dissipative PDEs in the ML era
E. D. Koronaki
N. Evangelou
Cristina P. Martin-Linares
E. Titi
Ioannis G. Kevrekidis
52
6
0
24 Oct 2023
Enhancing Predictive Capabilities in Data-Driven Dynamical Modeling with Automatic Differentiation: Koopman and Neural ODE Approaches
Ricardo Constante-Amores
Alec J. Linot
Michael D. Graham
76
10
0
10 Oct 2023
Interpretable learning of effective dynamics for multiscale systems
Emmanuel Menier
Sebastian Kaltenbach
Mouadh Yagoubi
Marc Schoenauer
Petros Koumoutsakos
AI4CE
79
7
0
11 Sep 2023
Autoencoders for discovering manifold dimension and coordinates in data from complex dynamical systems
Kevin Zeng
Carlos E. Pérez De Jesús
Andrew J Fox
M. Graham
AI4CE
89
14
0
01 May 2023
Recurrences reveal shared causal drivers of complex time series
W. Gilpin
CML
AI4TS
90
8
0
31 Jan 2023
Turbulence control in plane Couette flow using low-dimensional neural ODE-based models and deep reinforcement learning
Alec J. Linot
Kevin Zeng
M. Graham
AI4CE
49
19
0
28 Jan 2023
Super-Resolution Analysis via Machine Learning: A Survey for Fluid Flows
Kai Fukami
K. Fukagata
Kunihiko Taira
AI4CE
81
110
0
26 Jan 2023
Dynamics of a data-driven low-dimensional model of turbulent minimal Couette flow
Alec J. Linot
M. Graham
AI4CE
50
22
0
11 Jan 2023
Data-driven low-dimensional dynamic model of Kolmogorov flow
Carlos E. Pérez De Jesús
M. Graham
103
24
0
29 Oct 2022
Prospects of federated machine learning in fluid dynamics
Omer San
Suraj Pawar
Adil Rasheed
FedML
AI4CE
52
4
0
15 Aug 2022
Decentralized digital twins of complex dynamical systems
Omer San
Suraj Pawar
Adil Rasheed
AI4CE
86
11
0
07 Jul 2022
Learning effective dynamics from data-driven stochastic systems
Lingyu Feng
Ting Gao
Min Dai
Jinqiao Duan
SyDa
AI4CE
159
4
0
09 May 2022
Data-driven control of spatiotemporal chaos with reduced-order neural ODE-based models and reinforcement learning
Kevin Zeng
Alec J. Linot
M. Graham
AI4CE
81
29
0
01 May 2022
Discovering Governing Equations from Partial Measurements with Deep Delay Autoencoders
Joseph Bakarji
Kathleen P. Champion
J. Nathan Kutz
Steven L. Brunton
111
86
0
13 Jan 2022
Symmetry-Aware Autoencoders: s-PCA and s-nlPCA
Simon Kneer
T. Sayadi
D. Sipp
Peter J. Schmid
Georgios Rigas
59
10
0
04 Nov 2021
Nonlinear proper orthogonal decomposition for convection-dominated flows
Shady E. Ahmed
Omer San
Adil Rasheed
T. Iliescu
56
38
0
15 Oct 2021
Data-Driven Reduced-Order Modeling of Spatiotemporal Chaos with Neural Ordinary Differential Equations
Alec J. Linot
M. Graham
57
51
0
31 Aug 2021
Data-driven discovery of intrinsic dynamics
D. Floryan
M. Graham
AI4CE
183
78
0
12 Aug 2021
Learning normal form autoencoders for data-driven discovery of universal,parameter-dependent governing equations
M. Kalia
Steven L. Brunton
H. Meijer
C. Brune
J. Nathan Kutz
AI4CE
42
20
0
09 Jun 2021
Learning emergent PDEs in a learned emergent space
Felix P. Kemeth
Tom S. Bertalan
Thomas Thiem
Felix Dietrich
S. Moon
C. Laing
Ioannis G. Kevrekidis
AI4CE
34
7
0
23 Dec 2020
Using machine-learning modelling to understand macroscopic dynamics in a system of coupled maps
Francesco Borra
Marco Baldovin
AI4CE
66
2
0
08 Nov 2020
OnsagerNet: Learning Stable and Interpretable Dynamics using a Generalized Onsager Principle
Haijun Yu
Xinyuan Tian
Weinan E
Qianxiao Li
AI4CE
112
44
0
06 Sep 2020
Multiscale Simulations of Complex Systems by Learning their Effective Dynamics
Pantelis R. Vlachas
G. Arampatzis
Caroline Uhler
Petros Koumoutsakos
AI4CE
107
150
0
24 Jun 2020
1