ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2001.04990
  4. Cited By
Anomaly Detection with Density Estimation

Anomaly Detection with Density Estimation

14 January 2020
Benjamin Nachman
David Shih
ArXivPDFHTML

Papers citing "Anomaly Detection with Density Estimation"

28 / 28 papers shown
Title
Detecting Localized Density Anomalies in Multivariate Data via Coin-Flip Statistics
Detecting Localized Density Anomalies in Multivariate Data via Coin-Flip Statistics
Sebastian Springer
Andre Scaffidi
Maximilian Autenrieth
Gabriella Contardo
Alessandro Laio
R. Trotta
H. Haario
42
0
0
31 Mar 2025
Convolutional L2LFlows: Generating Accurate Showers in Highly Granular
  Calorimeters Using Convolutional Normalizing Flows
Convolutional L2LFlows: Generating Accurate Showers in Highly Granular Calorimeters Using Convolutional Normalizing Flows
Thorsten Buss
F. Gaede
Gregor Kasieczka
Claudius Krause
David Shih
AI4CE
36
6
0
30 May 2024
Unifying Simulation and Inference with Normalizing Flows
Unifying Simulation and Inference with Normalizing Flows
Haoxing Du
Claudius Krause
Vinicius Mikuni
Benjamin Nachman
Ian Pang
David Shih
42
3
0
29 Apr 2024
TERM Model: Tensor Ring Mixture Model for Density Estimation
TERM Model: Tensor Ring Mixture Model for Density Estimation
Ruituo Wu
Jiani Liu
Ce Zhu
Anh-Huy Phan
Ivan Oseledets
Yipeng Liu
28
1
0
13 Dec 2023
CURTAINs Flows For Flows: Constructing Unobserved Regions with Maximum
  Likelihood Estimation
CURTAINs Flows For Flows: Constructing Unobserved Regions with Maximum Likelihood Estimation
Debasish Sengupta
Samuel Klein
J. A. Raine
T. Golling
OOD
24
27
0
08 May 2023
Weakly-Supervised Anomaly Detection in the Milky Way
Weakly-Supervised Anomaly Detection in the Milky Way
M. Pettee
Sowmya Thanvantri
Benjamin Nachman
David Shih
M. Buckley
J. Collins
21
7
0
05 May 2023
Generative Invertible Quantum Neural Networks
Generative Invertible Quantum Neural Networks
Armand Rousselot
M. Spannowsky
BDL
18
9
0
24 Feb 2023
Comparative Study of Coupling and Autoregressive Flows through Robust
  Statistical Tests
Comparative Study of Coupling and Autoregressive Flows through Robust Statistical Tests
A. Coccaro
Marco Letizia
H. Reyes-González
Riccardo Torre
OOD
40
5
0
23 Feb 2023
Unravelling physics beyond the standard model with classical and quantum
  anomaly detection
Unravelling physics beyond the standard model with classical and quantum anomaly detection
Julian Schuhmacher
Laura Boggia
Vasilis Belis
E. Puljak
Michele Grossi
M. Pierini
S. Vallecorsa
F. Tacchino
Panagiotis Kl Barkoutsos
I. Tavernelli
18
26
0
25 Jan 2023
Anomalies, Representations, and Self-Supervision
Anomalies, Representations, and Self-Supervision
B. Dillon
Luigi Favaro
Friedrich Feiden
Tanmoy Modak
Tilman Plehn
29
9
0
11 Jan 2023
Resonant Anomaly Detection with Multiple Reference Datasets
Resonant Anomaly Detection with Multiple Reference Datasets
Mayee F. Chen
Benjamin Nachman
Frederic Sala
25
5
0
20 Dec 2022
LEAN-DMKDE: Quantum Latent Density Estimation for Anomaly Detection
LEAN-DMKDE: Quantum Latent Density Estimation for Anomaly Detection
Joseph A. Gallego-Mejia
Oscar A. Bustos-Brinez
Fabio A. González
50
2
0
15 Nov 2022
IRC-safe Graph Autoencoder for unsupervised anomaly detection
IRC-safe Graph Autoencoder for unsupervised anomaly detection
Oliver Atkinson
Akanksha Bhardwaj
C. Englert
P. Konar
Vishal S. Ngairangbam
M. Spannowsky
24
26
0
26 Apr 2022
Machine Learning in the Search for New Fundamental Physics
Machine Learning in the Search for New Fundamental Physics
G. Karagiorgi
Gregor Kasieczka
S. Kravitz
Benjamin Nachman
David Shih
AI4CE
44
113
0
07 Dec 2021
Online-compatible Unsupervised Non-resonant Anomaly Detection
Online-compatible Unsupervised Non-resonant Anomaly Detection
Vinicius Mikuni
Benjamin Nachman
David Shih
29
35
0
11 Nov 2021
Challenges for Unsupervised Anomaly Detection in Particle Physics
Challenges for Unsupervised Anomaly Detection in Particle Physics
Katherine Fraser
S. Homiller
Rashmish K. Mishra
B. Ostdiek
M. Schwartz
DRL
27
43
0
13 Oct 2021
Fair Normalizing Flows
Fair Normalizing Flows
Mislav Balunović
Anian Ruoss
Martin Vechev
AAML
19
36
0
10 Jun 2021
GBHT: Gradient Boosting Histogram Transform for Density Estimation
GBHT: Gradient Boosting Histogram Transform for Density Estimation
Jingyi Cui
H. Hang
Yisen Wang
Zhouchen Lin
22
9
0
10 Jun 2021
CaloFlow: Fast and Accurate Generation of Calorimeter Showers with
  Normalizing Flows
CaloFlow: Fast and Accurate Generation of Calorimeter Showers with Normalizing Flows
Claudius Krause
David Shih
AI4CE
34
81
0
09 Jun 2021
Latent Space Refinement for Deep Generative Models
Latent Space Refinement for Deep Generative Models
R. Winterhalder
Marco Bellagente
Benjamin Nachman
BDL
GAN
DRL
DiffM
10
27
0
01 Jun 2021
Better Latent Spaces for Better Autoencoders
Better Latent Spaces for Better Autoencoders
B. Dillon
Tilman Plehn
C. Sauer
P. Sorrenson
BDL
DRL
27
55
0
16 Apr 2021
Understanding Event-Generation Networks via Uncertainties
Understanding Event-Generation Networks via Uncertainties
Marco Bellagente
Manuel Haussmann
Michel Luchmann
Tilman Plehn
BDL
33
55
0
09 Apr 2021
Comparing Weak- and Unsupervised Methods for Resonant Anomaly Detection
Comparing Weak- and Unsupervised Methods for Resonant Anomaly Detection
J. Collins
P. Martín-Ramiro
Benjamin Nachman
David Shih
29
44
0
05 Apr 2021
Bump Hunting in Latent Space
Bump Hunting in Latent Space
Blaž Bortolato
B. Dillon
J. Kamenik
Aleks Smolkovič
DRL
29
43
0
11 Mar 2021
A Living Review of Machine Learning for Particle Physics
A Living Review of Machine Learning for Particle Physics
Matthew Feickert
Benjamin Nachman
KELM
AI4CE
27
178
0
02 Feb 2021
E Pluribus Unum Ex Machina: Learning from Many Collider Events at Once
E Pluribus Unum Ex Machina: Learning from Many Collider Events at Once
Benjamin Nachman
Jesse Thaler
35
33
0
18 Jan 2021
Neural Bridge Sampling for Evaluating Safety-Critical Autonomous Systems
Neural Bridge Sampling for Evaluating Safety-Critical Autonomous Systems
Aman Sinha
Matthew O'Kelly
Russ Tedrake
John C. Duchi
39
48
0
24 Aug 2020
GPU coprocessors as a service for deep learning inference in high energy
  physics
GPU coprocessors as a service for deep learning inference in high energy physics
J. Krupa
Kelvin Lin
M. Acosta Flechas
Jack T. Dinsmore
Javier Mauricio Duarte
...
K. Pedro
D. Rankin
Natchanon Suaysom
Matthew Trahms
N. Tran
BDL
3DV
18
32
0
20 Jul 2020
1