ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2001.05486
  4. Cited By
i-flow: High-dimensional Integration and Sampling with Normalizing Flows

i-flow: High-dimensional Integration and Sampling with Normalizing Flows

15 January 2020
Christina Gao
J. Isaacson
Claudius Krause
    AI4CE
ArXivPDFHTML

Papers citing "i-flow: High-dimensional Integration and Sampling with Normalizing Flows"

17 / 17 papers shown
Title
Online Difficulty Filtering for Reasoning Oriented Reinforcement Learning
Online Difficulty Filtering for Reasoning Oriented Reinforcement Learning
Sanghwan Bae
Jiwoo Hong
Min Young Lee
Hanbyul Kim
Jeongyeon Nam
Donghyun Kwak
OffRL
LRM
58
4
0
04 Apr 2025
Convolutional L2LFlows: Generating Accurate Showers in Highly Granular
  Calorimeters Using Convolutional Normalizing Flows
Convolutional L2LFlows: Generating Accurate Showers in Highly Granular Calorimeters Using Convolutional Normalizing Flows
Thorsten Buss
F. Gaede
Gregor Kasieczka
Claudius Krause
David Shih
AI4CE
36
6
0
30 May 2024
Unifying Simulation and Inference with Normalizing Flows
Unifying Simulation and Inference with Normalizing Flows
Haoxing Du
Claudius Krause
Vinicius Mikuni
Benjamin Nachman
Ian Pang
David Shih
42
3
0
29 Apr 2024
Improved off-policy training of diffusion samplers
Improved off-policy training of diffusion samplers
Marcin Sendera
Minsu Kim
Sarthak Mittal
Pablo Lemos
Luca Scimeca
Jarrid Rector-Brooks
Alexandre Adam
Yoshua Bengio
Nikolay Malkin
OffRL
68
18
0
07 Feb 2024
Diffusion Generative Flow Samplers: Improving learning signals through
  partial trajectory optimization
Diffusion Generative Flow Samplers: Improving learning signals through partial trajectory optimization
Dinghuai Zhang
Ricky Tian Qi Chen
Cheng-Hao Liu
Aaron C. Courville
Yoshua Bengio
39
41
0
04 Oct 2023
Comparative Study of Coupling and Autoregressive Flows through Robust
  Statistical Tests
Comparative Study of Coupling and Autoregressive Flows through Robust Statistical Tests
A. Coccaro
Marco Letizia
H. Reyes-González
Riccardo Torre
OOD
40
5
0
23 Feb 2023
Machine Learning in the Search for New Fundamental Physics
Machine Learning in the Search for New Fundamental Physics
G. Karagiorgi
Gregor Kasieczka
S. Kravitz
Benjamin Nachman
David Shih
AI4CE
49
113
0
07 Dec 2021
Path Integral Sampler: a stochastic control approach for sampling
Path Integral Sampler: a stochastic control approach for sampling
Qinsheng Zhang
Yongxin Chen
DiffM
18
101
0
30 Nov 2021
Comparing Machine Learning and Interpolation Methods for Loop-Level
  Calculations
Comparing Machine Learning and Interpolation Methods for Loop-Level Calculations
Ibrahim Chahrour
J. Wells
6
12
0
29 Nov 2021
Generative Networks for Precision Enthusiasts
Generative Networks for Precision Enthusiasts
A. Butter
Theo Heimel
Sander Hummerich
Tobias Krebs
Tilman Plehn
Armand Rousselot
Sophia Vent
AI4CE
19
59
0
22 Oct 2021
Optimising simulations for diphoton production at hadron colliders using
  amplitude neural networks
Optimising simulations for diphoton production at hadron colliders using amplitude neural networks
Joseph Aylett-Bullock
S. Badger
Ryan Moodie
13
22
0
17 Jun 2021
CaloFlow: Fast and Accurate Generation of Calorimeter Showers with
  Normalizing Flows
CaloFlow: Fast and Accurate Generation of Calorimeter Showers with Normalizing Flows
Claudius Krause
David Shih
AI4CE
34
81
0
09 Jun 2021
Latent Space Refinement for Deep Generative Models
Latent Space Refinement for Deep Generative Models
R. Winterhalder
Marco Bellagente
Benjamin Nachman
BDL
GAN
DRL
DiffM
10
27
0
01 Jun 2021
Understanding Event-Generation Networks via Uncertainties
Understanding Event-Generation Networks via Uncertainties
Marco Bellagente
Manuel Haussmann
Michel Luchmann
Tilman Plehn
BDL
38
55
0
09 Apr 2021
Annealed Flow Transport Monte Carlo
Annealed Flow Transport Monte Carlo
Michael Arbel
A. G. Matthews
Arnaud Doucet
36
69
0
15 Feb 2021
VegasFlow: accelerating Monte Carlo simulation across multiple hardware
  platforms
VegasFlow: accelerating Monte Carlo simulation across multiple hardware platforms
Stefano Carrazza
J. Cruz-Martinez
4
25
0
28 Feb 2020
Neural Network-Based Approach to Phase Space Integration
Neural Network-Based Approach to Phase Space Integration
Matthew D. Klimek
M. Perelstein
20
74
0
26 Oct 2018
1