ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2001.05755
  4. Cited By
ScaIL: Classifier Weights Scaling for Class Incremental Learning

ScaIL: Classifier Weights Scaling for Class Incremental Learning

16 January 2020
Eden Belouadah
Adrian Daniel Popescu
    CLL
ArXivPDFHTML

Papers citing "ScaIL: Classifier Weights Scaling for Class Incremental Learning"

13 / 13 papers shown
Title
ATOM: Attention Mixer for Efficient Dataset Distillation
ATOM: Attention Mixer for Efficient Dataset Distillation
Samir Khaki
A. Sajedi
Kai Wang
Lucy Z. Liu
Y. Lawryshyn
Konstantinos N. Plataniotis
38
3
0
02 May 2024
DataDAM: Efficient Dataset Distillation with Attention Matching
DataDAM: Efficient Dataset Distillation with Attention Matching
A. Sajedi
Samir Khaki
Ehsan Amjadian
Lucy Z. Liu
Y. Lawryshyn
Konstantinos N. Plataniotis
DD
37
59
0
29 Sep 2023
Cold Start Streaming Learning for Deep Networks
Cold Start Streaming Learning for Deep Networks
Cameron R. Wolfe
Anastasios Kyrillidis
CLL
15
2
0
09 Nov 2022
Dataset Distillation via Factorization
Dataset Distillation via Factorization
Songhua Liu
Kai Wang
Xingyi Yang
Jingwen Ye
Xinchao Wang
DD
124
141
0
30 Oct 2022
DC-BENCH: Dataset Condensation Benchmark
DC-BENCH: Dataset Condensation Benchmark
Justin Cui
Ruochen Wang
Si Si
Cho-Jui Hsieh
DD
29
71
0
20 Jul 2022
Queried Unlabeled Data Improves and Robustifies Class-Incremental
  Learning
Queried Unlabeled Data Improves and Robustifies Class-Incremental Learning
Tianlong Chen
Sijia Liu
Shiyu Chang
Lisa Amini
Zhangyang Wang
CLL
21
4
0
15 Jun 2022
Generalized and Incremental Few-Shot Learning by Explicit Learning and
  Calibration without Forgetting
Generalized and Incremental Few-Shot Learning by Explicit Learning and Calibration without Forgetting
Anna Kukleva
Hilde Kuehne
Bernt Schiele
CLL
15
50
0
18 Aug 2021
A First Look at Class Incremental Learning in Deep Learning Mobile
  Traffic Classification
A First Look at Class Incremental Learning in Deep Learning Mobile Traffic Classification
Giampaolo Bovenzi
Lixuan Yang
A. Finamore
Giuseppe Aceto
D. Ciuonzo
A. Pescapé
Dario Rossi
18
22
0
09 Jul 2021
Generative Feature-driven Image Replay for Continual Learning
Generative Feature-driven Image Replay for Continual Learning
Kevin Thandiackal
Tiziano Portenier
Andrea Giovannini
M. Gabrani
O. Goksel
CLL
VLM
DiffM
13
9
0
09 Jun 2021
Class-Incremental Learning with Generative Classifiers
Class-Incremental Learning with Generative Classifiers
Gido M. van de Ven
Zhe Li
A. Tolias
BDL
42
58
0
20 Apr 2021
Replay in Deep Learning: Current Approaches and Missing Biological
  Elements
Replay in Deep Learning: Current Approaches and Missing Biological Elements
Tyler L. Hayes
G. Krishnan
M. Bazhenov
H. Siegelmann
T. Sejnowski
Christopher Kanan
CLL
31
129
0
01 Apr 2021
Self-Supervised Features Improve Open-World Learning
Self-Supervised Features Improve Open-World Learning
A. Dhamija
T. Ahmad
Jonathan Schwan
Mohsen Jafarzadeh
Chunchun Li
Terrance E. Boult
SSL
14
13
0
15 Feb 2021
Dataset Condensation with Gradient Matching
Dataset Condensation with Gradient Matching
Bo-Lu Zhao
Konda Reddy Mopuri
Hakan Bilen
DD
26
472
0
10 Jun 2020
1