ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2001.08826
  4. Cited By
An $O(s^r)$-Resolution ODE Framework for Understanding Discrete-Time
  Algorithms and Applications to the Linear Convergence of Minimax Problems

An O(sr)O(s^r)O(sr)-Resolution ODE Framework for Understanding Discrete-Time Algorithms and Applications to the Linear Convergence of Minimax Problems

23 January 2020
Haihao Lu
ArXivPDFHTML

Papers citing "An $O(s^r)$-Resolution ODE Framework for Understanding Discrete-Time Algorithms and Applications to the Linear Convergence of Minimax Problems"

3 / 3 papers shown
Title
Linear Convergence of the Primal-Dual Gradient Method for Convex-Concave
  Saddle Point Problems without Strong Convexity
Linear Convergence of the Primal-Dual Gradient Method for Convex-Concave Saddle Point Problems without Strong Convexity
S. Du
Wei Hu
53
120
0
05 Feb 2018
A Differential Equation for Modeling Nesterov's Accelerated Gradient
  Method: Theory and Insights
A Differential Equation for Modeling Nesterov's Accelerated Gradient Method: Theory and Insights
Weijie Su
Stephen P. Boyd
Emmanuel J. Candes
102
1,152
0
04 Mar 2015
Convex Sparse Matrix Factorizations
Convex Sparse Matrix Factorizations
Francis R. Bach
Julien Mairal
Jean Ponce
134
143
0
10 Dec 2008
1