ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2001.11235
  4. Cited By
Learning Discrete Distributions by Dequantization

Learning Discrete Distributions by Dequantization

30 January 2020
Emiel Hoogeboom
Taco S. Cohen
Jakub M. Tomczak
    DRL
ArXivPDFHTML

Papers citing "Learning Discrete Distributions by Dequantization"

19 / 19 papers shown
Title
Model-Based Counterfactual Explanations Incorporating Feature Space
  Attributes for Tabular Data
Model-Based Counterfactual Explanations Incorporating Feature Space Attributes for Tabular Data
Yuta Sumiya
Hayaru Shouno
AAML
OOD
30
0
0
20 Apr 2024
Mixed Variational Flows for Discrete Variables
Mixed Variational Flows for Discrete Variables
Gian Carlo Diluvi
Benjamin Bloem-Reddy
Trevor Campbell
25
0
0
29 Aug 2023
CeFlow: A Robust and Efficient Counterfactual Explanation Framework for
  Tabular Data using Normalizing Flows
CeFlow: A Robust and Efficient Counterfactual Explanation Framework for Tabular Data using Normalizing Flows
Tri Dung Duong
Qian Li
Guandong Xu
OOD
32
7
0
26 Mar 2023
AdaCat: Adaptive Categorical Discretization for Autoregressive Models
AdaCat: Adaptive Categorical Discretization for Autoregressive Models
Qiyang Li
Ajay Jain
Pieter Abbeel
OffRL
39
4
0
03 Aug 2022
Learning to Bound: A Generative Cramér-Rao Bound
Learning to Bound: A Generative Cramér-Rao Bound
H. Habi
H. Messer
Y. Bresler
12
9
0
07 Mar 2022
Uncertainty Estimation for Computed Tomography with a Linearised Deep
  Image Prior
Uncertainty Estimation for Computed Tomography with a Linearised Deep Image Prior
Javier Antorán
Riccardo Barbano
Johannes Leuschner
José Miguel Hernández-Lobato
Bangti Jin
UQCV
22
10
0
28 Feb 2022
Uphill Roads to Variational Tightness: Monotonicity and Monte Carlo
  Objectives
Uphill Roads to Variational Tightness: Monotonicity and Monte Carlo Objectives
Pierre-Alexandre Mattei
J. Frellsen
16
4
0
26 Jan 2022
OSOA: One-Shot Online Adaptation of Deep Generative Models for Lossless
  Compression
OSOA: One-Shot Online Adaptation of Deep Generative Models for Lossless Compression
Chen Zhang
Shifeng Zhang
Fabio Maria Carlucci
Zhenguo Li
VLM
9
2
0
02 Nov 2021
iFlow: Numerically Invertible Flows for Efficient Lossless Compression
  via a Uniform Coder
iFlow: Numerically Invertible Flows for Efficient Lossless Compression via a Uniform Coder
Shifeng Zhang
Ning Kang
Tom Ryder
Zhenguo Li
25
30
0
01 Nov 2021
Out-of-Distribution Detection for Medical Applications: Guidelines for
  Practical Evaluation
Out-of-Distribution Detection for Medical Applications: Guidelines for Practical Evaluation
Karina Zadorozhny
P. Thoral
Paul Elbers
Giovanni Cina
OODD
OOD
6
12
0
30 Sep 2021
iVPF: Numerical Invertible Volume Preserving Flow for Efficient Lossless
  Compression
iVPF: Numerical Invertible Volume Preserving Flow for Efficient Lossless Compression
Shifeng Zhang
Chen Zhang
Ning Kang
Zhenguo Li
25
37
0
30 Mar 2021
Manifold Density Estimation via Generalized Dequantization
Manifold Density Estimation via Generalized Dequantization
James A. Brofos
Marcus A. Brubaker
Roy R. Lederman
11
5
0
14 Feb 2021
Invertible DenseNets with Concatenated LipSwish
Invertible DenseNets with Concatenated LipSwish
Yura Perugachi-Diaz
Jakub M. Tomczak
S. Bhulai
15
20
0
04 Feb 2021
Wavelet Flow: Fast Training of High Resolution Normalizing Flows
Wavelet Flow: Fast Training of High Resolution Normalizing Flows
Jason J. Yu
Konstantinos G. Derpanis
Marcus A. Brubaker
TPM
24
41
0
26 Oct 2020
Audio Dequantization for High Fidelity Audio Generation in Flow-based
  Neural Vocoder
Audio Dequantization for High Fidelity Audio Generation in Flow-based Neural Vocoder
Hyun-Wook Yoon
Sang-Hoon Lee
Hyeong-Rae Noh
Seong-Whan Lee
12
11
0
16 Aug 2020
Fast, Accurate, and Simple Models for Tabular Data via Augmented
  Distillation
Fast, Accurate, and Simple Models for Tabular Data via Augmented Distillation
Rasool Fakoor
Jonas W. Mueller
Nick Erickson
Pratik Chaudhari
Alex Smola
11
54
0
25 Jun 2020
Categorical Normalizing Flows via Continuous Transformations
Categorical Normalizing Flows via Continuous Transformations
Phillip Lippe
E. Gavves
BDL
13
43
0
17 Jun 2020
Closing the Dequantization Gap: PixelCNN as a Single-Layer Flow
Closing the Dequantization Gap: PixelCNN as a Single-Layer Flow
Didrik Nielsen
Ole Winther
MQ
193
13
0
06 Feb 2020
Pixel Recurrent Neural Networks
Pixel Recurrent Neural Networks
Aaron van den Oord
Nal Kalchbrenner
Koray Kavukcuoglu
SSeg
GAN
233
2,545
0
25 Jan 2016
1