ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2001.11946
  4. Cited By
A Hybrid Quantum enabled RBM Advantage: Convolutional Autoencoders For
  Quantum Image Compression and Generative Learning

A Hybrid Quantum enabled RBM Advantage: Convolutional Autoencoders For Quantum Image Compression and Generative Learning

31 January 2020
Jennifer Sleeman
J. Dorband
M. Halem
ArXiv (abs)PDFHTML

Papers citing "A Hybrid Quantum enabled RBM Advantage: Convolutional Autoencoders For Quantum Image Compression and Generative Learning"

10 / 10 papers shown
Comparison of D-Wave Quantum Annealing and Markov Chain Monte Carlo for Sampling from a Probability Distribution of a Restricted Boltzmann Machine
Comparison of D-Wave Quantum Annealing and Markov Chain Monte Carlo for Sampling from a Probability Distribution of a Restricted Boltzmann Machine
Abdelmoula El Yazizi
Samee U. Khan
Yaroslav Koshka
143
1
0
13 Aug 2025
Training an Ising Machine with Equilibrium Propagation
Training an Ising Machine with Equilibrium PropagationNature Communications (Nat. Commun.), 2023
Jérémie Laydevant
Danijela Marković
Julie Grollier
213
45
0
22 May 2023
A hybrid quantum-classical approach for inference on restricted
  Boltzmann machines
A hybrid quantum-classical approach for inference on restricted Boltzmann machinesQuantum Machine Intelligence (QMI), 2023
M. Kalis
A. Locāns
Rolands Sikovs
H. Naseri
A. Ambainis
AI4CE
156
8
0
31 Mar 2023
Training Deep Boltzmann Networks with Sparse Ising Machines
Training Deep Boltzmann Networks with Sparse Ising MachinesNature Electronics (Nat. Electron.), 2023
Shaila Niazi
Navid Anjum Aadit
Masoud Mohseni
S. Chowdhury
Yao Qin
Kerem Y Çamsarı
AI4CE
235
58
0
19 Mar 2023
Quantum Deep Learning: Sampling Neural Nets with a Quantum Annealer
Quantum Deep Learning: Sampling Neural Nets with a Quantum Annealer
Catherine F. Higham
Adrian Bedford
BDL
89
4
0
19 Jul 2021
A Quantum Hopfield Associative Memory Implemented on an Actual Quantum
  Processor
A Quantum Hopfield Associative Memory Implemented on an Actual Quantum ProcessorScientific Reports (Sci Rep), 2021
N. Miller
Saibal Mukhopadhyay
173
12
0
25 May 2021
Training a quantum annealing based restricted Boltzmann machine on
  cybersecurity data
Training a quantum annealing based restricted Boltzmann machine on cybersecurity dataIEEE Transactions on Emerging Topics in Computational Intelligence (IEEE TETCI), 2020
Vivek Dixit
R. Selvarajan
Tamer Aldwairi
Yaroslav Koshka
Mark A. Novotny
Travis S. Humble
M. A. Alam
S. Kais
270
41
0
24 Nov 2020
Training and Classification using a Restricted Boltzmann Machine on the
  D-Wave 2000Q
Training and Classification using a Restricted Boltzmann Machine on the D-Wave 2000Q
Vivek Dixit
R. Selvarajan
M. A. Alam
Travis S. Humble
S. Kais
171
49
0
07 May 2020
Generative and discriminative training of Boltzmann machine through
  Quantum annealing
Generative and discriminative training of Boltzmann machine through Quantum annealingScientific Reports (Sci Rep), 2020
Siddharth Srivastava
V. Sundararaghavan
AI4CE
205
6
0
03 Feb 2020
Towards Sampling from Nondirected Probabilistic Graphical models using a
  D-Wave Quantum Annealer
Towards Sampling from Nondirected Probabilistic Graphical models using a D-Wave Quantum AnnealerQuantum Information Processing (QIP), 2019
Y. Koshka
Mark A. Novotny
119
13
0
01 May 2019
1
Page 1 of 1