Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2002.01810
Cited By
Understanding the Decision Boundary of Deep Neural Networks: An Empirical Study
5 February 2020
David Mickisch
F. Assion
Florens Greßner
W. Günther
M. Motta
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Understanding the Decision Boundary of Deep Neural Networks: An Empirical Study"
7 / 7 papers shown
Title
Detecting Brittle Decisions for Free: Leveraging Margin Consistency in Deep Robust Classifiers
Jonas Ngnawé
Sabyasachi Sahoo
Y. Pequignot
Frédéric Precioso
Christian Gagné
AAML
39
0
0
26 Jun 2024
Latent Imitator: Generating Natural Individual Discriminatory Instances for Black-Box Fairness Testing
Yisong Xiao
Aishan Liu
Tianlin Li
Xianglong Liu
22
26
0
19 May 2023
The Vanishing Decision Boundary Complexity and the Strong First Component
Hengshuai Yao
UQCV
28
0
0
25 Nov 2022
Understanding CNN Fragility When Learning With Imbalanced Data
Damien Dablain
Kristen N. Jacobson
C. Bellinger
Mark Roberts
Nitesh V. Chawla
24
39
0
17 Oct 2022
A New Defense Against Adversarial Images: Turning a Weakness into a Strength
Tao Yu
Shengyuan Hu
Chuan Guo
Wei-Lun Chao
Kilian Q. Weinberger
AAML
50
101
0
16 Oct 2019
Adversarial Examples, Uncertainty, and Transfer Testing Robustness in Gaussian Process Hybrid Deep Networks
John Bradshaw
A. G. Matthews
Zoubin Ghahramani
BDL
AAML
60
171
0
08 Jul 2017
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
281
5,833
0
08 Jul 2016
1