Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2002.02374
Cited By
Macroscopic Traffic Flow Modeling with Physics Regularized Gaussian Process: A New Insight into Machine Learning Applications
6 February 2020
Yun Yuan
X. Yang
Zhao Zhang
Shandian Zhe
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Macroscopic Traffic Flow Modeling with Physics Regularized Gaussian Process: A New Insight into Machine Learning Applications"
7 / 7 papers shown
Title
Closed-Loop Neural Operator-Based Observer of Traffic Density
Alice Harting
Karl H. Johansson
Matthieu Barreau
30
0
0
07 Apr 2025
MoGERNN: An Inductive Traffic Predictor for Unobserved Locations in Dynamic Sensing Networks
Qishen Zhou
Yifan Zhang
Michail A. Makridis
Anastasios Kouvelas
Yibing Wang
Simon Hu
AI4TS
75
1
0
21 Jan 2025
Physics-informed Machine Learning for Calibrating Macroscopic Traffic Flow Models
Yu Tang
Li Jin
K. Ozbay
AI4CE
13
1
0
12 Jul 2023
Inverting the Fundamental Diagram and Forecasting Boundary Conditions: How Machine Learning Can Improve Macroscopic Models for Traffic Flow
Maya Briani
E. Cristiani
Elia Onofri
21
2
0
21 Mar 2023
Traffic State Estimation from Vehicle Trajectories with Anisotropic Gaussian Processes
Fan Wu
Zhanhong Cheng
Huiyu Chen
T. Qiu
Lijun Sun
18
3
0
04 Mar 2023
Short-term traffic prediction using physics-aware neural networks
M. Pereira
Annika Lang
Balázs Kulcsár
13
19
0
21 Sep 2021
Bayesian Inference with Posterior Regularization and applications to Infinite Latent SVMs
Jun Zhu
Ning Chen
Eric P. Xing
BDL
52
156
0
05 Oct 2012
1