ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.04151
  4. Cited By
Statistical aspects of nuclear mass models
v1v2v3 (latest)

Statistical aspects of nuclear mass models

11 February 2020
Vojtech Kejzlar
L. Neufcourt
W. Nazarewicz
P. Reinhard
ArXiv (abs)PDFHTML

Papers citing "Statistical aspects of nuclear mass models"

6 / 6 papers shown
Title
Model orthogonalization and Bayesian forecast mixing via Principal
  Component Analysis
Model orthogonalization and Bayesian forecast mixing via Principal Component Analysis
Pablo Giuliani
K. Godbey
Vojtech Kejzlar
W. Nazarewicz
54
4
0
17 May 2024
Local Bayesian Dirichlet mixing of imperfect models
Local Bayesian Dirichlet mixing of imperfect models
Vojtech Kejzlar
L. Neufcourt
W. Nazarewicz
39
10
0
02 Nov 2023
Machine Learning in Nuclear Physics
Machine Learning in Nuclear Physics
A. Boehnlein
M. Diefenthaler
C. Fanelli
M. Hjorth-Jensen
T. Horn
...
M. Schram
A. Scheinker
Michael S. Smith
Xin-Nian Wang
Veronique Ziegler
AI4CE
111
41
0
04 Dec 2021
Black Box Variational Bayesian Model Averaging
Black Box Variational Bayesian Model Averaging
Vojtech Kejzlar
Shrijita Bhattacharya
Mookyong Son
T. Maiti
BDL
53
3
0
23 Jun 2021
A Fast and Calibrated Computer Model Emulator: An Empirical Bayes
  Approach
A Fast and Calibrated Computer Model Emulator: An Empirical Bayes Approach
Vojtech Kejzlar
Mookyong Son
Shrijita Bhattacharya
T. Maiti
28
6
0
11 Aug 2020
Variational Inference with Vine Copulas: An efficient Approach for
  Bayesian Computer Model Calibration
Variational Inference with Vine Copulas: An efficient Approach for Bayesian Computer Model Calibration
Vojtech Kejzlar
T. Maiti
56
6
0
28 Mar 2020
1