ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.04881
  4. Cited By
Learning Flat Latent Manifolds with VAEs

Learning Flat Latent Manifolds with VAEs

12 February 2020
Nutan Chen
Alexej Klushyn
Francesco Ferroni
Justin Bayer
Patrick van der Smagt
    DRL
ArXivPDFHTML

Papers citing "Learning Flat Latent Manifolds with VAEs"

28 / 28 papers shown
Title
Investigating Image Manifolds of 3D Objects: Learning, Shape Analysis, and Comparisons
Benjamin Beaudett
Shenyuan Liang
Anuj Srivastava
53
0
0
09 Mar 2025
Understanding Variational Autoencoders with Intrinsic Dimension and
  Information Imbalance
Understanding Variational Autoencoders with Intrinsic Dimension and Information Imbalance
Charles Camboulin
Diego Doimo
Aldo Glielmo
DRL
69
0
0
04 Nov 2024
Isometric Representation Learning for Disentangled Latent Space of
  Diffusion Models
Isometric Representation Learning for Disentangled Latent Space of Diffusion Models
Jaehoon Hahm
Junho Lee
Sunghyun Kim
Joonseok Lee
DiffM
31
7
0
16 Jul 2024
Modularity aided consistent attributed graph clustering via coarsening
Modularity aided consistent attributed graph clustering via coarsening
Samarth Bhatia
Yukti Makhija
Manoj Kumar
Sandeep Kumar
22
0
0
09 Jul 2024
Compressing Latent Space via Least Volume
Compressing Latent Space via Least Volume
Qiuyi Chen
M. Fuge
27
1
0
27 Apr 2024
Sequential Model for Predicting Patient Adherence in Subcutaneous
  Immunotherapy for Allergic Rhinitis
Sequential Model for Predicting Patient Adherence in Subcutaneous Immunotherapy for Allergic Rhinitis
Yin Li
Yu Xiong
Wenxin Fan
Kai Wang
Qingqing Yu
Liping Si
Patrick van der Smagt
Jun Tang
Nutan Chen
25
1
0
21 Jan 2024
Canonical normalizing flows for manifold learning
Canonical normalizing flows for manifold learning
Kyriakos Flouris
E. Konukoglu
DRL
48
7
0
19 Oct 2023
On Explicit Curvature Regularization in Deep Generative Models
On Explicit Curvature Regularization in Deep Generative Models
Yonghyeon Lee
Frank C. Park
BDL
22
12
0
19 Sep 2023
A Geometric Perspective on Autoencoders
A Geometric Perspective on Autoencoders
Yonghyeon Lee
16
6
0
15 Sep 2023
Geometric Autoencoders -- What You See is What You Decode
Geometric Autoencoders -- What You See is What You Decode
Philipp Nazari
Sebastian Damrich
Fred Hamprecht
30
12
0
30 Jun 2023
Data Representations' Study of Latent Image Manifolds
Data Representations' Study of Latent Image Manifolds
Ilya Kaufman
Omri Azencot
8
7
0
31 May 2023
Computationally-Efficient Neural Image Compression with Shallow Decoders
Computationally-Efficient Neural Image Compression with Shallow Decoders
Yibo Yang
Stephan Mandt
11
22
0
13 Apr 2023
VTAE: Variational Transformer Autoencoder with Manifolds Learning
VTAE: Variational Transformer Autoencoder with Manifolds Learning
Pourya Shamsolmoali
Masoumeh Zareapoor
Huiyu Zhou
Dacheng Tao
Xuelong Li
DRL
20
11
0
03 Apr 2023
Manifold Learning by Mixture Models of VAEs for Inverse Problems
Manifold Learning by Mixture Models of VAEs for Inverse Problems
Giovanni S. Alberti
J. Hertrich
Matteo Santacesaria
Silvia Sciutto
DRL
29
6
0
27 Mar 2023
Amortized Variational Inference: A Systematic Review
Amortized Variational Inference: A Systematic Review
Ankush Ganguly
Sanjana Jain
Ukrit Watchareeruetai
20
14
0
22 Sep 2022
Adversarial robustness of VAEs through the lens of local geometry
Adversarial robustness of VAEs through the lens of local geometry
Asif Khan
Amos Storkey
AAML
DRL
18
2
0
08 Aug 2022
GD-VAEs: Geometric Dynamic Variational Autoencoders for Learning Nonlinear Dynamics and Dimension Reductions
GD-VAEs: Geometric Dynamic Variational Autoencoders for Learning Nonlinear Dynamics and Dimension Reductions
Ryan Lopez
P. Atzberger
AI4CE
24
7
0
10 Jun 2022
Discriminating Against Unrealistic Interpolations in Generative
  Adversarial Networks
Discriminating Against Unrealistic Interpolations in Generative Adversarial Networks
Henning Petzka
Ted Kronvall
C. Sminchisescu
GAN
18
2
0
02 Mar 2022
Flat Latent Manifolds for Human-machine Co-creation of Music
Flat Latent Manifolds for Human-machine Co-creation of Music
Nutan Chen
Djalel Benbouzid
Francesco Ferroni
Mathis Nitschke
Luciano Pinna
Patrick van der Smagt
11
0
0
23 Feb 2022
Exploring the Latent Space of Autoencoders with Interventional Assays
Exploring the Latent Space of Autoencoders with Interventional Assays
Felix Leeb
Stefan Bauer
M. Besserve
Bernhard Schölkopf
DRL
43
17
0
30 Jun 2021
Local Disentanglement in Variational Auto-Encoders Using Jacobian $L_1$
  Regularization
Local Disentanglement in Variational Auto-Encoders Using Jacobian L1L_1L1​ Regularization
Travers Rhodes
Daniel D. Lee
DRL
11
15
0
05 Jun 2021
Out-of-distribution Detection and Generation using Soft Brownian Offset
  Sampling and Autoencoders
Out-of-distribution Detection and Generation using Soft Brownian Offset Sampling and Autoencoders
Felix Möller
Diego Botache
Denis Huseljic
Florian Heidecker
Maarten Bieshaar
Bernhard Sick
OODD
11
25
0
04 May 2021
Uncertainty Estimation Using Riemannian Model Dynamics for Offline
  Reinforcement Learning
Uncertainty Estimation Using Riemannian Model Dynamics for Offline Reinforcement Learning
Guy Tennenholtz
Shie Mannor
OffRL
13
11
0
22 Feb 2021
Variational Autoencoders for Learning Nonlinear Dynamics of Physical
  Systems
Variational Autoencoders for Learning Nonlinear Dynamics of Physical Systems
Ryan Lopez
P. Atzberger
DRL
AI4CE
17
13
0
07 Dec 2020
On Implicit Regularization in $β$-VAEs
On Implicit Regularization in βββ-VAEs
Abhishek Kumar
Ben Poole
DRL
10
53
0
31 Jan 2020
Deep Cosine Metric Learning for Person Re-Identification
Deep Cosine Metric Learning for Person Re-Identification
N. Wojke
Alex Bewley
31
352
0
02 Dec 2018
Simple Online and Realtime Tracking with a Deep Association Metric
Simple Online and Realtime Tracking with a Deep Association Metric
N. Wojke
Alex Bewley
Dietrich Paulus
VOT
228
3,463
0
21 Mar 2017
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
247
3,236
0
24 Nov 2016
1