ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.04999
  4. Cited By
Differentiable Graph Module (DGM) for Graph Convolutional Networks

Differentiable Graph Module (DGM) for Graph Convolutional Networks

11 February 2020
Anees Kazi
Luca Cosmo
Seyed-Ahmad Ahmadi
Nassir Navab
M. Bronstein
    GNN
    MedIm
ArXivPDFHTML

Papers citing "Differentiable Graph Module (DGM) for Graph Convolutional Networks"

18 / 18 papers shown
Title
FedHERO: A Federated Learning Approach for Node Classification Task on Heterophilic Graphs
FedHERO: A Federated Learning Approach for Node Classification Task on Heterophilic Graphs
Zihan Chen
Xingbo Fu
Yushun Dong
Jundong Li
Cong Shen
FedML
69
0
0
29 Apr 2025
GraphFM: Graph Factorization Machines for Feature Interaction Modeling
GraphFM: Graph Factorization Machines for Feature Interaction Modeling
Shu Wu
Zekun Li
Yunyue Su
Zeyu Cui
Xiaoyu Zhang
Liang Wang
64
22
0
24 Feb 2025
MM-GTUNets: Unified Multi-Modal Graph Deep Learning for Brain Disorders Prediction
MM-GTUNets: Unified Multi-Modal Graph Deep Learning for Brain Disorders Prediction
Luhui Cai
Weiming Zeng
Hongyu Chen
Hua Zhang
Yueyang Li
Hongjie Yan
Lingbin Bian
Lingbin Bian
Wai Ting Siok
Nizhuan Wang
MedIm
45
3
0
20 Jun 2024
Learning Latent Graph Structures and their Uncertainty
Learning Latent Graph Structures and their Uncertainty
A. Manenti
Daniele Zambon
C. Alippi
BDL
25
1
0
30 May 2024
Adaptive Message Passing: A General Framework to Mitigate Oversmoothing, Oversquashing, and Underreaching
Adaptive Message Passing: A General Framework to Mitigate Oversmoothing, Oversquashing, and Underreaching
Federico Errica
Henrik Christiansen
Viktor Zaverkin
Takashi Maruyama
Mathias Niepert
Francesco Alesiani
45
6
0
27 Dec 2023
Exploring Graph Classification Techniques Under Low Data Constraints: A
  Comprehensive Study
Exploring Graph Classification Techniques Under Low Data Constraints: A Comprehensive Study
Kush Kothari
Bhavya Mehta
Reshmika Nambiar
S. Shrawne
13
0
0
21 Nov 2023
A Comparative Study of Population-Graph Construction Methods and Graph
  Neural Networks for Brain Age Regression
A Comparative Study of Population-Graph Construction Methods and Graph Neural Networks for Brain Age Regression
Kyriaki-Margarita Bintsi
Tamara T. Mueller
Sophie Starck
V. Baltatzis
A. Hammers
Daniel Rueckert
17
2
0
26 Sep 2023
Everything Perturbed All at Once: Enabling Differentiable Graph Attacks
Everything Perturbed All at Once: Enabling Differentiable Graph Attacks
Haoran Liu
Bokun Wang
Jianling Wang
Xiangjue Dong
Tianbao Yang
James Caverlee
AAML
26
3
0
29 Aug 2023
Robust Training of Graph Neural Networks via Noise Governance
Robust Training of Graph Neural Networks via Noise Governance
Siyi Qian
Haochao Ying
Renjun Hu
Jingbo Zhou
Jintai Chen
D. Z. Chen
Jian Wu
NoLa
19
34
0
12 Nov 2022
Self-Supervised Graph Structure Refinement for Graph Neural Networks
Self-Supervised Graph Structure Refinement for Graph Neural Networks
Jianan Zhao
Qianlong Wen
Mingxuan Ju
Chuxu Zhang
Yanfang Ye
21
20
0
12 Nov 2022
Dynamic Graph Message Passing Networks for Visual Recognition
Dynamic Graph Message Passing Networks for Visual Recognition
Li Zhang
Mohan Chen
Anurag Arnab
Xiangyang Xue
Philip H. S. Torr
GNN
18
1
0
20 Sep 2022
Unsupervised pre-training of graph transformers on patient population
  graphs
Unsupervised pre-training of graph transformers on patient population graphs
Chantal Pellegrini
Nassir Navab
Anees Kazi
MedIm
AI4CE
37
11
0
21 Jul 2022
DiffWire: Inductive Graph Rewiring via the Lovász Bound
DiffWire: Inductive Graph Rewiring via the Lovász Bound
Adrián Arnaiz-Rodríguez
Ahmed Begga
Francisco Escolano
Nuria Oliver
19
60
0
15 Jun 2022
Deep Dynamic Effective Connectivity Estimation from Multivariate Time
  Series
Deep Dynamic Effective Connectivity Estimation from Multivariate Time Series
Usman Mahmood
Z. Fu
Vince D. Calhoun
Sergey Plis
23
3
0
04 Feb 2022
Understanding over-squashing and bottlenecks on graphs via curvature
Understanding over-squashing and bottlenecks on graphs via curvature
Jake Topping
Francesco Di Giovanni
B. Chamberlain
Xiaowen Dong
M. Bronstein
15
423
0
29 Nov 2021
Latent Structure Mining with Contrastive Modality Fusion for Multimedia
  Recommendation
Latent Structure Mining with Contrastive Modality Fusion for Multimedia Recommendation
Jinghao Zhang
Yanqiao Zhu
Qiang Liu
Mengqi Zhang
Shu Wu
Liang Wang
9
34
0
01 Nov 2021
Learning physical properties of anomalous random walks using graph
  neural networks
Learning physical properties of anomalous random walks using graph neural networks
Hippolyte Verdier
M. Duval
François Laurent
Alhassan Cassé
Christian L. Vestergaard
Jean-Baptiste Masson
13
25
0
22 Mar 2021
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
234
1,801
0
25 Nov 2016
1