Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2002.05466
Cited By
v1
v2 (latest)
Convergence of a Stochastic Gradient Method with Momentum for Non-Smooth Non-Convex Optimization
13 February 2020
Vien V. Mai
M. Johansson
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Convergence of a Stochastic Gradient Method with Momentum for Non-Smooth Non-Convex Optimization"
35 / 35 papers shown
Title
HOME-3: High-Order Momentum Estimator with Third-Power Gradient for Convex and Smooth Nonconvex Optimization
Wei Zhang
Arif Hassan Zidan
Afrar Jahin
Wei Zhang
Tianming Liu
ODL
89
0
0
16 May 2025
Decentralized Nonconvex Composite Federated Learning with Gradient Tracking and Momentum
Yuan Zhou
Xinli Shi
Xuelong Li
Jiachen Zhong
G. Wen
Jinde Cao
FedML
103
0
0
17 Apr 2025
Increasing Batch Size Improves Convergence of Stochastic Gradient Descent with Momentum
Keisuke Kamo
Hideaki Iiduka
129
0
0
15 Jan 2025
On the Performance Analysis of Momentum Method: A Frequency Domain Perspective
Xianliang Li
Jun Luo
Zhiwei Zheng
Hanxiao Wang
Li Luo
Lingkun Wen
Linlong Wu
Sheng Xu
183
0
0
29 Nov 2024
Empirical Tests of Optimization Assumptions in Deep Learning
Hoang Tran
Qinzi Zhang
Ashok Cutkosky
68
2
0
01 Jul 2024
Towards Exact Gradient-based Training on Analog In-memory Computing
Zhaoxian Wu
Tayfun Gokmen
Malte J. Rasch
Tianyi Chen
71
2
0
18 Jun 2024
Almost sure convergence rates of stochastic gradient methods under gradient domination
Simon Weissmann
Sara Klein
Waïss Azizian
Leif Döring
89
3
0
22 May 2024
Random Scaling and Momentum for Non-smooth Non-convex Optimization
Qinzi Zhang
Ashok Cutkosky
67
4
0
16 May 2024
Leveraging Continuous Time to Understand Momentum When Training Diagonal Linear Networks
Hristo Papazov
Scott Pesme
Nicolas Flammarion
79
7
0
08 Mar 2024
Stochastic Weakly Convex Optimization Beyond Lipschitz Continuity
Wenzhi Gao
Qi Deng
61
1
0
25 Jan 2024
Accelerated Convergence of Stochastic Heavy Ball Method under Anisotropic Gradient Noise
Boyao Wang
Yuxing Liu
Xiaoyu Wang
Tong Zhang
37
5
0
22 Dec 2023
High Probability Convergence of Adam Under Unbounded Gradients and Affine Variance Noise
Yusu Hong
Junhong Lin
67
9
0
03 Nov 2023
Acceleration of stochastic gradient descent with momentum by averaging: finite-sample rates and asymptotic normality
Kejie Tang
Weidong Liu
Yichen Zhang
Xi Chen
50
2
0
28 May 2023
A Unified Momentum-based Paradigm of Decentralized SGD for Non-Convex Models and Heterogeneous Data
Haizhou Du
Chengdong Ni
38
1
0
01 Mar 2023
Delayed Stochastic Algorithms for Distributed Weakly Convex Optimization
W. Gao
Qinhao Deng
70
0
0
30 Jan 2023
Policy Gradient in Robust MDPs with Global Convergence Guarantee
Qiuhao Wang
C. Ho
Marek Petrik
107
29
0
20 Dec 2022
Towards understanding how momentum improves generalization in deep learning
Samy Jelassi
Yuanzhi Li
ODL
MLT
AI4CE
90
38
0
13 Jul 2022
Convergence of First-Order Methods for Constrained Nonconvex Optimization with Dependent Data
Ahmet Alacaoglu
Hanbaek Lyu
59
4
0
29 Mar 2022
Personalized incentives as feedback design in generalized Nash equilibrium problems
F. Fabiani
Andrea Simonetto
Paul Goulart
62
5
0
24 Mar 2022
On Almost Sure Convergence Rates of Stochastic Gradient Methods
Jun Liu
Ye Yuan
97
38
0
09 Feb 2022
On the Convergence of mSGD and AdaGrad for Stochastic Optimization
Ruinan Jin
Yu Xing
Xingkang He
53
11
0
26 Jan 2022
Convergence of an Asynchronous Block-Coordinate Forward-Backward Algorithm for Convex Composite Optimization
Cheik Traoré
Saverio Salzo
S. Villa
24
0
0
14 Jan 2022
Non-convex Distributionally Robust Optimization: Non-asymptotic Analysis
Jikai Jin
Samir Bhatt
Haiyang Wang
Liwei Wang
82
51
0
24 Oct 2021
Distributed stochastic inertial-accelerated methods with delayed derivatives for nonconvex problems
Yangyang Xu
Yibo Xu
Yonggui Yan
Jiewei Chen
66
4
0
24 Jul 2021
Robust Regression via Model Based Methods
Armin Moharrer
Khashayar Kamran
E. Yeh
Stratis Ioannidis
27
0
0
20 Jun 2021
Minibatch and Momentum Model-based Methods for Stochastic Weakly Convex Optimization
Qi Deng
Wenzhi Gao
70
14
0
06 Jun 2021
Bandwidth-based Step-Sizes for Non-Convex Stochastic Optimization
Xiaoyu Wang
M. Johansson
62
2
0
05 Jun 2021
OpReg-Boost: Learning to Accelerate Online Algorithms with Operator Regression
Nicola Bastianello
Andrea Simonetto
E. Dall’Anese
60
3
0
27 May 2021
Scale Invariant Monte Carlo under Linear Function Approximation with Curvature based step-size
Rahul Madhavan
Hemant Makwana
48
0
0
15 Apr 2021
Stability and Convergence of Stochastic Gradient Clipping: Beyond Lipschitz Continuity and Smoothness
Vien V. Mai
M. Johansson
90
40
0
12 Feb 2021
Minibatch optimal transport distances; analysis and applications
Kilian Fatras
Younes Zine
Szymon Majewski
Rémi Flamary
Rémi Gribonval
Nicolas Courty
OT
116
60
0
05 Jan 2021
Stochastic optimization with momentum: convergence, fluctuations, and traps avoidance
Anas Barakat
Pascal Bianchi
W. Hachem
S. Schechtman
91
13
0
07 Dec 2020
A Modular Analysis of Provable Acceleration via Polyak's Momentum: Training a Wide ReLU Network and a Deep Linear Network
Jun-Kun Wang
Chi-Heng Lin
Jacob D. Abernethy
76
24
0
04 Oct 2020
Momentum via Primal Averaging: Theoretical Insights and Learning Rate Schedules for Non-Convex Optimization
Aaron Defazio
86
23
0
01 Oct 2020
Convergence of adaptive algorithms for weakly convex constrained optimization
Ahmet Alacaoglu
Yura Malitsky
Volkan Cevher
61
10
0
11 Jun 2020
1