ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.06200
  4. Cited By
Fast Fair Regression via Efficient Approximations of Mutual Information

Fast Fair Regression via Efficient Approximations of Mutual Information

14 February 2020
D. Steinberg
Alistair Reid
S. O'Callaghan
Finnian Lattimore
L. McCalman
Tibério S. Caetano
    FaML
ArXiv (abs)PDFHTML

Papers citing "Fast Fair Regression via Efficient Approximations of Mutual Information"

10 / 10 papers shown
Title
Counterfactually Fair Regression with Double Machine Learning
Counterfactually Fair Regression with Double Machine Learning
Patrick Rehill
FaML
56
1
0
21 Mar 2023
Mean Parity Fair Regression in RKHS
Mean Parity Fair Regression in RKHS
Shaokui Wei
Jiayin Liu
Bing Li
H. Zha
48
3
0
21 Feb 2023
Practical Approaches for Fair Learning with Multitype and Multivariate
  Sensitive Attributes
Practical Approaches for Fair Learning with Multitype and Multivariate Sensitive Attributes
Tennison Liu
Alex J. Chan
B. V. Breugel
M. Schaar
FaML
53
2
0
11 Nov 2022
Fair Regression under Sample Selection Bias
Fair Regression under Sample Selection Bias
Wei Du
Xintao Wu
Hanghang Tong
56
4
0
08 Oct 2021
Gradual (In)Compatibility of Fairness Criteria
Gradual (In)Compatibility of Fairness Criteria
Corinna Hertweck
T. Raz
79
12
0
09 Sep 2021
Achieving Fairness with a Simple Ridge Penalty
Achieving Fairness with a Simple Ridge Penalty
M. Scutari
F. Panero
M. Proissl
FaML
87
14
0
18 May 2021
A Stochastic Optimization Framework for Fair Risk Minimization
A Stochastic Optimization Framework for Fair Risk Minimization
Andrew Lowy
Sina Baharlouei
Rakesh Pavan
Meisam Razaviyayn
Ahmad Beirami
FaML
69
21
0
24 Feb 2021
Learning Invariant Representations and Risks for Semi-supervised Domain
  Adaptation
Learning Invariant Representations and Risks for Semi-supervised Domain Adaptation
Yue Liu
Yezhen Wang
Shanghang Zhang
Dongsheng Li
Trevor Darrell
Kurt Keutzer
Han Zhao
OOD
83
96
0
09 Oct 2020
A minimax framework for quantifying risk-fairness trade-off in
  regression
A minimax framework for quantifying risk-fairness trade-off in regression
Evgenii Chzhen
Nicolas Schreuder
FaML
111
34
0
28 Jul 2020
Review of Mathematical frameworks for Fairness in Machine Learning
Review of Mathematical frameworks for Fairness in Machine Learning
E. del Barrio
Paula Gordaliza
Jean-Michel Loubes
FaMLFedML
69
40
0
26 May 2020
1