ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.06708
  4. Cited By
Combining Observational and Experimental Datasets Using Shrinkage
  Estimators
v1v2 (latest)

Combining Observational and Experimental Datasets Using Shrinkage Estimators

Biometrics (Biometrics), 2020
16 February 2020
Evan T. R. Rosenman
Guillaume W. Basse
Art B. Owen
Mike Baiocchi
    CML
ArXiv (abs)PDFHTML

Papers citing "Combining Observational and Experimental Datasets Using Shrinkage Estimators"

19 / 19 papers shown
Statistical Inference Leveraging Synthetic Data with Distribution-Free Guarantees
Statistical Inference Leveraging Synthetic Data with Distribution-Free Guarantees
Meshi Bashari
Yonghoon Lee
Roy Maor Lotan
Edgar Dobriban
Yaniv Romano
SyDa
201
2
0
24 Sep 2025
Deconfounded Warm-Start Thompson Sampling with Applications to Precision Medicine
Deconfounded Warm-Start Thompson Sampling with Applications to Precision Medicine
Prateek Jaiswal
Esmaeil Keyvanshokooh
Junyu Cao
256
0
0
22 May 2025
A Cautionary Tale on Integrating Studies with Disparate Outcome Measures for Causal Inference
A Cautionary Tale on Integrating Studies with Disparate Outcome Measures for Causal Inference
Harsh Parikh
Trang Quynh Nguyen
Elizabeth A. Stuart
Kara E. Rudolph
Caleb H. Miles
CML
165
0
0
16 May 2025
Combining Incomplete Observational and Randomized Data for Heterogeneous
  Treatment Effects
Combining Incomplete Observational and Randomized Data for Heterogeneous Treatment EffectsInternational Conference on Information and Knowledge Management (CIKM), 2024
Dong Yao
Caizhi Tang
Daixin Wang
Longfei Li
CML
240
0
0
28 Oct 2024
A Double Machine Learning Approach to Combining Experimental and Observational Data
A Double Machine Learning Approach to Combining Experimental and Observational Data
Harsh Parikh
Marco Morucci
Vittorio Orlandi
Sudeepa Roy
Cynthia Rudin
A. Volfovsky
331
10
0
04 Jul 2023
Causal Effect Estimation from Observational and Interventional Data
  Through Matrix Weighted Linear Estimators
Causal Effect Estimation from Observational and Interventional Data Through Matrix Weighted Linear EstimatorsConference on Uncertainty in Artificial Intelligence (UAI), 2023
Klaus-Rudolf Kladny
Julius von Kügelgen
Bernhard Schölkopf
Michael Muehlebach
CML
186
1
0
09 Jun 2023
Comparison of Methods that Combine Multiple Randomized Trials to
  Estimate Heterogeneous Treatment Effects
Comparison of Methods that Combine Multiple Randomized Trials to Estimate Heterogeneous Treatment EffectsStatistics in Medicine (Stat Med), 2023
Carly L Brantner
Trang Quynh Nguyen
Tengjie Tang
Congwen Zhao
H. Hong
E. Stuart
179
10
0
28 Mar 2023
Falsification of Internal and External Validity in Observational Studies
  via Conditional Moment Restrictions
Falsification of Internal and External Validity in Observational Studies via Conditional Moment RestrictionsInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2023
Zeshan Hussain
M. Shih
Michael Oberst
Ilker Demirel
D. Sontag
246
13
0
30 Jan 2023
Falsification before Extrapolation in Causal Effect Estimation
Falsification before Extrapolation in Causal Effect EstimationNeural Information Processing Systems (NeurIPS), 2022
Zeshan Hussain
Michael Oberst
M. Shih
David Sontag
CML
376
10
0
27 Sep 2022
Combining Observational and Randomized Data for Estimating Heterogeneous
  Treatment Effects
Combining Observational and Randomized Data for Estimating Heterogeneous Treatment Effects
Tobias Hatt
Jeroen Berrevoets
Alicia Curth
Stefan Feuerriegel
M. Schaar
CML
297
37
0
25 Feb 2022
Multivariate Tie-breaker Designs
Multivariate Tie-breaker DesignsElectronic Journal of Statistics (EJS), 2022
Tim P. Morrison
Art B. Owen
303
3
0
21 Feb 2022
Long-term Causal Inference Under Persistent Confounding via Data
  Combination
Long-term Causal Inference Under Persistent Confounding via Data Combination
Guido Imbens
Nathan Kallus
Xiaojie Mao
Yuhao Wang
CML
478
58
0
15 Feb 2022
Conditional Cross-Design Synthesis Estimators for Generalizability in
  Medicaid
Conditional Cross-Design Synthesis Estimators for Generalizability in Medicaid
Irina Degtiar
T. Layton
Jacob Wallace
Sherri Rose
CML
135
7
0
27 Sep 2021
Semiparametric Estimation of Long-Term Treatment Effects
Semiparametric Estimation of Long-Term Treatment EffectsJournal of Econometrics (JE), 2021
Jiafeng Chen
David M. Ritzwoller
474
25
0
30 Jul 2021
Federated Causal Inference in Heterogeneous Observational Data
Federated Causal Inference in Heterogeneous Observational DataStatistics in Medicine (Stat. Med.), 2021
Ruoxuan Xiong
Allison Koenecke
Michael A. Powell
Zhu Shen
Joshua T. Vogelstein
Susan Athey
FedMLCML
730
59
0
25 Jul 2021
Causal Decision Making and Causal Effect Estimation Are Not the Same...
  and Why It Matters
Causal Decision Making and Causal Effect Estimation Are Not the Same... and Why It MattersINFORMS Journal on Data Science (INFORMS J. Data Sci.), 2021
Carlos Fernández-Loría
F. Provost
CML
337
54
0
08 Apr 2021
Multi-Source Causal Inference Using Control Variates
Multi-Source Causal Inference Using Control Variates
Wenshuo Guo
S. Wang
Peng Ding
Yixin Wang
Michael I. Jordan
CML
283
24
0
30 Mar 2021
A Review of Generalizability and Transportability
A Review of Generalizability and TransportabilityAnnual Review of Statistics and Its Application (ARSIA), 2021
Irina Degtiar
Sherri Rose
CML
158
275
0
23 Feb 2021
Sharp Sensitivity Analysis for Inverse Propensity Weighting via Quantile
  Balancing
Sharp Sensitivity Analysis for Inverse Propensity Weighting via Quantile BalancingJournal of the American Statistical Association (JASA), 2021
Jacob Dorn
Kevin Guo
338
70
0
08 Feb 2021
1
Page 1 of 1