ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.07101
  4. Cited By
Augmented Normalizing Flows: Bridging the Gap Between Generative Flows
  and Latent Variable Models

Augmented Normalizing Flows: Bridging the Gap Between Generative Flows and Latent Variable Models

17 February 2020
Chin-Wei Huang
Laurent Dinh
Aaron Courville
    DRL
ArXivPDFHTML

Papers citing "Augmented Normalizing Flows: Bridging the Gap Between Generative Flows and Latent Variable Models"

24 / 24 papers shown
Title
TRADE: Transfer of Distributions between External Conditions with Normalizing Flows
TRADE: Transfer of Distributions between External Conditions with Normalizing Flows
Stefan Wahl
Armand Rousselot
Felix Dräxler
Ullrich Kothe
Ullrich Köthe
24
0
0
25 Oct 2024
A Survey of Geometric Graph Neural Networks: Data Structures, Models and Applications
A Survey of Geometric Graph Neural Networks: Data Structures, Models and Applications
Jiaqi Han
Jiacheng Cen
Liming Wu
Zongzhao Li
Xiangzhe Kong
...
Zhewei Wei
Deli Zhao
Yu Rong
Wenbing Huang
Wenbing Huang
AI4CE
34
20
0
01 Mar 2024
Stable Training of Normalizing Flows for High-dimensional Variational
  Inference
Stable Training of Normalizing Flows for High-dimensional Variational Inference
Daniel Andrade
BDL
TPM
37
1
0
26 Feb 2024
SE(3) Equivariant Augmented Coupling Flows
SE(3) Equivariant Augmented Coupling Flows
Laurence I. Midgley
Vincent Stimper
Javier Antorán
Emile Mathieu
Bernhard Schölkopf
José Miguel Hernández-Lobato
30
22
0
20 Aug 2023
A Review of Change of Variable Formulas for Generative Modeling
A Review of Change of Variable Formulas for Generative Modeling
Ullrich Kothe
19
6
0
04 Aug 2023
Multiscale Augmented Normalizing Flows for Image Compression
Multiscale Augmented Normalizing Flows for Image Compression
Marc Windsheimer
Fabian Brand
Andre Kaup
DRL
17
0
0
09 May 2023
Where to Diffuse, How to Diffuse, and How to Get Back: Automated
  Learning for Multivariate Diffusions
Where to Diffuse, How to Diffuse, and How to Get Back: Automated Learning for Multivariate Diffusions
Raghav Singhal
Mark Goldstein
Rajesh Ranganath
DiffM
22
21
0
14 Feb 2023
Rigid Body Flows for Sampling Molecular Crystal Structures
Rigid Body Flows for Sampling Molecular Crystal Structures
Jonas Köhler
Michele Invernizzi
P. D. Haan
Frank Noé
AI4CE
32
27
0
26 Jan 2023
Whitening Convergence Rate of Coupling-based Normalizing Flows
Whitening Convergence Rate of Coupling-based Normalizing Flows
Felix Dräxler
Christoph Schnörr
Ullrich Kothe
34
7
0
25 Oct 2022
Distilling Style from Image Pairs for Global Forward and Inverse Tone
  Mapping
Distilling Style from Image Pairs for Global Forward and Inverse Tone Mapping
Aamir Mustafa
Param Hanji
Rafał K. Mantiuk
27
10
0
30 Sep 2022
Flowification: Everything is a Normalizing Flow
Flowification: Everything is a Normalizing Flow
Bálint Máté
Samuel Klein
T. Golling
Franccois Fleuret
18
3
0
30 May 2022
Efficient-VDVAE: Less is more
Efficient-VDVAE: Less is more
Louay Hazami
Rayhane Mama
Ragavan Thurairatnam
BDL
19
28
0
25 Mar 2022
Semi-Discrete Normalizing Flows through Differentiable Tessellation
Semi-Discrete Normalizing Flows through Differentiable Tessellation
Ricky T. Q. Chen
Brandon Amos
Maximilian Nickel
24
10
0
14 Mar 2022
Funnels: Exact maximum likelihood with dimensionality reduction
Funnels: Exact maximum likelihood with dimensionality reduction
Samuel Klein
J. A. Raine
Sebastian Pina-Otey
S. Voloshynovskiy
T. Golling
TPM
30
4
0
15 Dec 2021
Characteristic Neural Ordinary Differential Equations
Characteristic Neural Ordinary Differential Equations
Xingzi Xu
Ali Hasan
Khalil Elkhalil
Jie Ding
Vahid Tarokh
BDL
19
3
0
25 Nov 2021
Resampling Base Distributions of Normalizing Flows
Resampling Base Distributions of Normalizing Flows
Vincent Stimper
Bernhard Schölkopf
José Miguel Hernández-Lobato
BDL
22
32
0
29 Oct 2021
Score-based Generative Modeling in Latent Space
Score-based Generative Modeling in Latent Space
Arash Vahdat
Karsten Kreis
Jan Kautz
DiffM
11
656
0
10 Jun 2021
Latent Space Refinement for Deep Generative Models
Latent Space Refinement for Deep Generative Models
R. Winterhalder
Marco Bellagente
Benjamin Nachman
BDL
GAN
DRL
DiffM
10
27
0
01 Jun 2021
Deep Generative Modelling: A Comparative Review of VAEs, GANs,
  Normalizing Flows, Energy-Based and Autoregressive Models
Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models
Sam Bond-Taylor
Adam Leach
Yang Long
Chris G. Willcocks
VLM
TPM
36
477
0
08 Mar 2021
Jacobian Determinant of Normalizing Flows
Jacobian Determinant of Normalizing Flows
Huadong Liao
Jiawei He
DRL
11
7
0
12 Feb 2021
Convex Potential Flows: Universal Probability Distributions with Optimal
  Transport and Convex Optimization
Convex Potential Flows: Universal Probability Distributions with Optimal Transport and Convex Optimization
Chin-Wei Huang
Ricky T. Q. Chen
Christos Tsirigotis
Aaron Courville
OT
112
95
0
10 Dec 2020
Stochastic Normalizing Flows
Stochastic Normalizing Flows
Hao Wu
Jonas Köhler
Frank Noé
37
176
0
16 Feb 2020
Pixel Recurrent Neural Networks
Pixel Recurrent Neural Networks
Aaron van den Oord
Nal Kalchbrenner
Koray Kavukcuoglu
SSeg
GAN
227
2,543
0
25 Jan 2016
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
173
3,260
0
09 Jun 2012
1