Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2002.08327
Cited By
Fawkes: Protecting Privacy against Unauthorized Deep Learning Models
19 February 2020
Shawn Shan
Emily Wenger
Jiayun Zhang
Huiying Li
Haitao Zheng
Ben Y. Zhao
PICV
MU
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Fawkes: Protecting Privacy against Unauthorized Deep Learning Models"
8 / 8 papers shown
Title
Analysis of Adversarial Image Manipulations
Ahsi Lo
Gabriella Pangelinan
Michael C. King
PICV
16
0
0
10 May 2023
On the Adversarial Inversion of Deep Biometric Representations
Gioacchino Tangari
Shreesh Keskar
Hassan Jameel Asghar
Dali Kaafar
AAML
31
2
0
12 Apr 2023
Rethinking Fairness: An Interdisciplinary Survey of Critiques of Hegemonic ML Fairness Approaches
Lindsay Weinberg
FaML
SyDa
29
58
0
06 May 2022
Initiative Defense against Facial Manipulation
Qidong Huang
Jie Zhang
Wenbo Zhou
Weiming Zhang
Nenghai Yu
AAML
21
63
0
19 Dec 2021
Unlearnable Examples: Making Personal Data Unexploitable
Hanxun Huang
Xingjun Ma
S. Erfani
James Bailey
Yisen Wang
MIACV
156
190
0
13 Jan 2021
Dataset Security for Machine Learning: Data Poisoning, Backdoor Attacks, and Defenses
Micah Goldblum
Dimitris Tsipras
Chulin Xie
Xinyun Chen
Avi Schwarzschild
D. Song
A. Madry
Bo-wen Li
Tom Goldstein
SILM
27
270
0
18 Dec 2020
Witches' Brew: Industrial Scale Data Poisoning via Gradient Matching
Jonas Geiping
Liam H. Fowl
Yifan Jiang
W. Czaja
Gavin Taylor
Michael Moeller
Tom Goldstein
AAML
19
215
0
04 Sep 2020
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
287
5,837
0
08 Jul 2016
1