Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2002.09309
Cited By
Efficiently Sampling Functions from Gaussian Process Posteriors
21 February 2020
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Efficiently Sampling Functions from Gaussian Process Posteriors"
44 / 44 papers shown
Title
Computation-Aware Kalman Filtering and Smoothing
Marvin Pfortner
Jonathan Wenger
Jon Cockayne
Philipp Hennig
86
3
0
13 Mar 2025
Amortized Safe Active Learning for Real-Time Data Acquisition: Pretrained Neural Policies from Simulated Nonparametric Functions
Cen-You Li
Marc Toussaint
Barbara Rakitsch
Christoph Zimmer
OffRL
155
0
0
26 Jan 2025
Residual Deep Gaussian Processes on Manifolds
Kacper Wyrwal
Andreas Krause
Viacheslav Borovitskiy
BDL
49
0
0
31 Oct 2024
Optimizing Posterior Samples for Bayesian Optimization via Rootfinding
Taiwo A. Adebiyi
Bach Do
Ruda Zhang
114
2
0
29 Oct 2024
Scaling Gaussian Processes for Learning Curve Prediction via Latent Kronecker Structure
Jihao Andreas Lin
Sebastian Ament
Maximilian Balandat
E. Bakshy
BDL
29
2
0
11 Oct 2024
Improving Linear System Solvers for Hyperparameter Optimisation in Iterative Gaussian Processes
J. Lin
Shreyas Padhy
Bruno Mlodozeniec
Javier Antorán
José Miguel Hernández-Lobato
43
2
0
28 May 2024
Q-Star Meets Scalable Posterior Sampling: Bridging Theory and Practice via HyperAgent
Yingru Li
Jiawei Xu
Lei Han
Zhi-Quan Luo
BDL
OffRL
26
6
0
05 Feb 2024
Practical Path-based Bayesian Optimization
Jose Pablo Folch
J. Odgers
Shiqiang Zhang
Robert M. Lee
B. Shafei
David Walz
Calvin Tsay
Mark van der Wilk
Ruth Misener
44
2
0
01 Dec 2023
Implicit Manifold Gaussian Process Regression
Bernardo Fichera
Viacheslav Borovitskiy
Andreas Krause
A. Billard
18
3
0
30 Oct 2023
Exact Inference for Continuous-Time Gaussian Process Dynamics
K. Ensinger
Nicholas Tagliapietra
Sebastian Ziesche
Sebastian Trimpe
26
1
0
05 Sep 2023
Learning Switching Port-Hamiltonian Systems with Uncertainty Quantification
Thomas Beckers
Tom Z. Jiahao
George J. Pappas
31
2
0
15 May 2023
Gaussian Process Port-Hamiltonian Systems: Bayesian Learning with Physics Prior
Thomas Beckers
Jacob H. Seidman
P. Perdikaris
George J. Pappas
PINN
29
17
0
15 May 2023
Mastering the exploration-exploitation trade-off in Bayesian Optimization
Antonio Candelieri
26
1
0
15 May 2023
MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning
Adam X. Yang
Laurence Aitchison
Henry B. Moss
29
4
0
22 Feb 2023
Free-Form Variational Inference for Gaussian Process State-Space Models
Xuhui Fan
Edwin V. Bonilla
T. O’Kane
Scott A. Sisson
16
9
0
20 Feb 2023
Inducing Point Allocation for Sparse Gaussian Processes in High-Throughput Bayesian Optimisation
Henry B. Moss
Sebastian W. Ober
Victor Picheny
32
24
0
24 Jan 2023
The Past Does Matter: Correlation of Subsequent States in Trajectory Predictions of Gaussian Process Models
Steffen Ridderbusch
Sina Ober-Blobaum
Paul Goulart
11
2
0
20 Nov 2022
Provably Reliable Large-Scale Sampling from Gaussian Processes
Anthony Stephenson
Robert Allison
Edward O. Pyzer-Knapp
21
2
0
15 Nov 2022
Isotropic Gaussian Processes on Finite Spaces of Graphs
Viacheslav Borovitskiy
Mohammad Reza Karimi
Vignesh Ram Somnath
Andreas Krause
35
7
0
03 Nov 2022
Numerically Stable Sparse Gaussian Processes via Minimum Separation using Cover Trees
Alexander Terenin
David R. Burt
A. Artemev
Seth Flaxman
Mark van der Wilk
C. Rasmussen
Hong Ge
58
7
0
14 Oct 2022
Inferring Smooth Control: Monte Carlo Posterior Policy Iteration with Gaussian Processes
Joe Watson
Jan Peters
26
15
0
07 Oct 2022
Joint Entropy Search for Multi-objective Bayesian Optimization
Ben Tu
Axel Gandy
N. Kantas
B. Shafei
21
38
0
06 Oct 2022
Sample-based Uncertainty Quantification with a Single Deterministic Neural Network
T. Kanazawa
Chetan Gupta
UQCV
30
4
0
17 Sep 2022
Variational Inference for Model-Free and Model-Based Reinforcement Learning
Felix Leibfried
OffRL
13
0
0
04 Sep 2022
Stationary Kernels and Gaussian Processes on Lie Groups and their Homogeneous Spaces I: the compact case
I. Azangulov
A. Smolensky
Alexander Terenin
Viacheslav Borovitskiy
39
21
0
31 Aug 2022
Information-theoretic Inducing Point Placement for High-throughput Bayesian Optimisation
Henry B. Moss
Sebastian W. Ober
Victor Picheny
20
4
0
06 Jun 2022
Gamifying optimization: a Wasserstein distance-based analysis of human search
Antonio Candelieri
Andrea Ponti
F. Archetti
13
0
0
12 Dec 2021
Geometry-aware Bayesian Optimization in Robotics using Riemannian Matérn Kernels
Noémie Jaquier
Viacheslav Borovitskiy
A. Smolensky
Alexander Terenin
Tamim Asfour
Leonel Rozo
26
35
0
02 Nov 2021
Efficient Exploration in Binary and Preferential Bayesian Optimization
T. Fauvel
M. Chalk
19
7
0
18 Oct 2021
Uncertainty Quantification and Experimental Design for Large-Scale Linear Inverse Problems under Gaussian Process Priors
Cédric Travelletti
D. Ginsbourger
N. Linde
16
3
0
08 Sep 2021
Bayesian Optimization with High-Dimensional Outputs
Wesley J. Maddox
Maximilian Balandat
A. Wilson
E. Bakshy
UQCV
24
50
0
24 Jun 2021
Variational multiple shooting for Bayesian ODEs with Gaussian processes
Pashupati Hegde
Çağatay Yıldız
Harri Lähdesmäki
Samuel Kaski
Markus Heinonen
22
16
0
21 Jun 2021
Bayesian Algorithm Execution: Estimating Computable Properties of Black-box Functions Using Mutual Information
W. Neiswanger
Ke Alexander Wang
Stefano Ermon
MLAU
29
30
0
19 Apr 2021
Uncertainty quantification and exploration-exploitation trade-off in humans
Antonio Candelieri
Andrea Ponti
F. Archetti
21
4
0
05 Feb 2021
A Tutorial on Sparse Gaussian Processes and Variational Inference
Felix Leibfried
Vincent Dutordoir
S. T. John
N. Durrande
GP
42
49
0
27 Dec 2020
Cluster-Specific Predictions with Multi-Task Gaussian Processes
Arthur Leroy
Pierre Latouche
Benjamin Guedj
S. Gey
11
4
0
16 Nov 2020
Pathwise Conditioning of Gaussian Processes
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
18
57
0
08 Nov 2020
Matérn Gaussian Processes on Graphs
Viacheslav Borovitskiy
I. Azangulov
Alexander Terenin
P. Mostowsky
M. Deisenroth
N. Durrande
13
78
0
29 Oct 2020
Asynchronous ε-Greedy Bayesian Optimisation
George De Ath
Richard Everson
J. Fieldsend
35
5
0
15 Oct 2020
Fast Matrix Square Roots with Applications to Gaussian Processes and Bayesian Optimization
Geoff Pleiss
M. Jankowiak
David Eriksson
Anil Damle
Jacob R. Gardner
17
43
0
19 Jun 2020
Matérn Gaussian processes on Riemannian manifolds
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
9
120
0
17 Jun 2020
Scalable Thompson Sampling using Sparse Gaussian Process Models
Sattar Vakili
Henry B. Moss
A. Artemev
Vincent Dutordoir
Victor Picheny
13
34
0
09 Jun 2020
Achieving Robustness to Aleatoric Uncertainty with Heteroscedastic Bayesian Optimisation
Ryan-Rhys Griffiths
Alexander A. Aldrick
Miguel García-Ortegón
Vidhi R. Lalchand
A. Lee
31
35
0
17 Oct 2019
Gaussian Processes with Errors in Variables: Theory and Computation
Shuang Zhou
D. Pati
Tianying Wang
Yun Yang
R. Carroll
16
3
0
14 Oct 2019
1