Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2002.09343
Cited By
Robust Optimization for Fairness with Noisy Protected Groups
21 February 2020
S. Wang
Wenshuo Guo
Harikrishna Narasimhan
Andrew Cotter
Maya R. Gupta
Michael I. Jordan
NoLa
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Robust Optimization for Fairness with Noisy Protected Groups"
22 / 22 papers shown
Title
Specification Overfitting in Artificial Intelligence
Benjamin Roth
Pedro Henrique Luz de Araujo
Yuxi Xia
Saskia Kaltenbrunner
Christoph Korab
56
0
0
13 Mar 2024
On the Inductive Biases of Demographic Parity-based Fair Learning Algorithms
Haoyu Lei
Amin Gohari
Farzan Farnia
FaML
29
1
0
28 Feb 2024
Fairness Risks for Group-conditionally Missing Demographics
Kaiqi Jiang
Wenzhe Fan
Mao Li
Xinhua Zhang
99
0
0
20 Feb 2024
Robust probabilistic inference via a constrained transport metric
Abhisek Chakraborty
A. Bhattacharya
D. Pati
33
3
0
17 Mar 2023
Improving Fair Training under Correlation Shifts
Yuji Roh
Kangwook Lee
Steven Euijong Whang
Changho Suh
27
17
0
05 Feb 2023
Hyper-parameter Tuning for Fair Classification without Sensitive Attribute Access
A. Veldanda
Ivan Brugere
Sanghamitra Dutta
Alan Mishler
S. Garg
28
5
0
02 Feb 2023
Fair Ranking with Noisy Protected Attributes
Anay Mehrotra
Nisheeth K. Vishnoi
23
16
0
30 Nov 2022
COFFEE: Counterfactual Fairness for Personalized Text Generation in Explainable Recommendation
Nan Wang
Qifan Wang
Yi-Chia Wang
Maziar Sanjabi
Jingzhou Liu
Hamed Firooz
Hongning Wang
Shaoliang Nie
28
6
0
14 Oct 2022
Differentially Private SGDA for Minimax Problems
Zhenhuan Yang
Shu Hu
Yunwen Lei
Kush R. Varshney
Siwei Lyu
Yiming Ying
31
19
0
22 Jan 2022
Towards Group Robustness in the presence of Partial Group Labels
Vishnu Suresh Lokhande
Kihyuk Sohn
Jinsung Yoon
Madeleine Udell
Chen-Yu Lee
Tomas Pfister
OOD
24
11
0
10 Jan 2022
BARACK: Partially Supervised Group Robustness With Guarantees
N. Sohoni
Maziar Sanjabi
Nicolas Ballas
Aditya Grover
Shaoliang Nie
Hamed Firooz
Christopher Ré
OOD
10
24
0
31 Dec 2021
Learning Invariant Representations with Missing Data
Mark Goldstein
J. Jacobsen
O. Chau
A. Saporta
A. Puli
Rajesh Ranganath
Andrew C. Miller
OOD
12
5
0
01 Dec 2021
Sample Selection for Fair and Robust Training
Yuji Roh
Kangwook Lee
Steven Euijong Whang
Changho Suh
13
61
0
27 Oct 2021
Fair Sequential Selection Using Supervised Learning Models
Mohammad Mahdi Khalili
Xueru Zhang
Mahed Abroshan
FaML
20
18
0
26 Oct 2021
Multiaccurate Proxies for Downstream Fairness
Emily Diana
Wesley Gill
Michael Kearns
K. Kenthapadi
Aaron Roth
Saeed Sharifi-Malvajerdi
27
21
0
09 Jul 2021
Fairness for Image Generation with Uncertain Sensitive Attributes
A. Jalal
Sushrut Karmalkar
Jessica Hoffmann
A. Dimakis
Eric Price
DiffM
27
39
0
23 Jun 2021
Algorithmic Bias and Data Bias: Understanding the Relation between Distributionally Robust Optimization and Data Curation
Agnieszka Słowik
Léon Bottou
FaML
30
19
0
17 Jun 2021
Examining and Combating Spurious Features under Distribution Shift
Chunting Zhou
Xuezhe Ma
Paul Michel
Graham Neubig
OOD
24
65
0
14 Jun 2021
No Subclass Left Behind: Fine-Grained Robustness in Coarse-Grained Classification Problems
N. Sohoni
Jared A. Dunnmon
Geoffrey Angus
Albert Gu
Christopher Ré
16
240
0
25 Nov 2020
A Distributionally Robust Approach to Fair Classification
Bahar Taşkesen
Viet Anh Nguyen
Daniel Kuhn
Jose H. Blanchet
FaML
18
61
0
18 Jul 2020
Fair Performance Metric Elicitation
G. Hiranandani
Harikrishna Narasimhan
Oluwasanmi Koyejo
24
18
0
23 Jun 2020
Fair Learning with Private Demographic Data
Hussein Mozannar
Mesrob I. Ohannessian
Nathan Srebro
25
73
0
26 Feb 2020
1