Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2002.09464
Cited By
v1
v2
v3 (latest)
Private Mean Estimation of Heavy-Tailed Distributions
21 February 2020
Gautam Kamath
Vikrant Singhal
Jonathan R. Ullman
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Private Mean Estimation of Heavy-Tailed Distributions"
50 / 75 papers shown
Title
Differentially Private Sparse Linear Regression with Heavy-tailed Responses
Xizhi Tian
Meng Ding
Touming Tao
Zihang Xiang
Di Wang
18
0
0
07 Jun 2025
Towards hyperparameter-free optimization with differential privacy
Zhiqi Bu
Ruixuan Liu
82
2
0
02 Mar 2025
Learning with Differentially Private (Sliced) Wasserstein Gradients
David Rodríguez-Vítores
Clément Lalanne
Jean-Michel Loubes
FedML
111
0
0
03 Feb 2025
Differentially Private Multi-Sampling from Distributions
Albert Cheu
Debanuj Nayak
72
1
0
13 Dec 2024
Statistical-Computational Trade-offs for Density Estimation
Anders Aamand
Alexandr Andoni
Justin Y. Chen
Piotr Indyk
Shyam Narayanan
Sandeep Silwal
Haike Xu
22
0
0
30 Oct 2024
Privately Learning Smooth Distributions on the Hypercube by Projections
Clément Lalanne
Sébastien Gadat
72
1
0
16 Sep 2024
Differential Private Stochastic Optimization with Heavy-tailed Data: Towards Optimal Rates
Puning Zhao
Xiaogang Xu
Zhe Liu
Chong Wang
Rongfei Fan
Qingming Li
72
1
0
19 Aug 2024
Private Means and the Curious Incident of the Free Lunch
Jack Fitzsimons
James Honaker
Michael Shoemate
Vikrant Singhal
85
2
0
19 Aug 2024
On Differentially Private U Statistics
Kamalika Chaudhuri
Po-Ling Loh
Shourya Pandey
Purnamrita Sarkar
FedML
92
1
0
06 Jul 2024
Distribution Learnability and Robustness
Shai Ben-David
Alex Bie
Gautam Kamath
Tosca Lechner
94
2
0
25 Jun 2024
Optimal Federated Learning for Nonparametric Regression with Heterogeneous Distributed Differential Privacy Constraints
T. T. Cai
Abhinav Chakraborty
Lasse Vuursteen
FedML
83
3
0
10 Jun 2024
Federated Nonparametric Hypothesis Testing with Differential Privacy Constraints: Optimal Rates and Adaptive Tests
T. T. Cai
Abhinav Chakraborty
Lasse Vuursteen
FedML
77
2
0
10 Jun 2024
A Huber Loss Minimization Approach to Mean Estimation under User-level Differential Privacy
Puning Zhao
Lifeng Lai
Li Shen
Qingming Li
Xiaogang Xu
Zhe Liu
79
7
0
22 May 2024
Near-Optimal differentially private low-rank trace regression with guaranteed private initialization
Mengyue Zha
67
0
0
24 Mar 2024
A Simple and Practical Method for Reducing the Disparate Impact of Differential Privacy
Lucas Rosenblatt
Julia Stoyanovich
Christopher Musco
52
2
0
18 Dec 2023
Mean estimation in the add-remove model of differential privacy
Alex Kulesza
A. Suresh
Yuyan Wang
56
3
0
11 Dec 2023
Sample-Optimal Locally Private Hypothesis Selection and the Provable Benefits of Interactivity
A. F. Pour
Hassan Ashtiani
S. Asoodeh
76
1
0
09 Dec 2023
Instance-Specific Asymmetric Sensitivity in Differential Privacy
David Durfee
94
1
0
02 Nov 2023
Improved Analysis of Sparse Linear Regression in Local Differential Privacy Model
Liyang Zhu
Meng Ding
Vaneet Aggarwal
Jinhui Xu
Di Wang
40
5
0
11 Oct 2023
Better and Simpler Lower Bounds for Differentially Private Statistical Estimation
Shyam Narayanan
FedML
68
11
0
10 Oct 2023
Striking a Balance: An Optimal Mechanism Design for Heterogenous Differentially Private Data Acquisition for Logistic Regression
Ameya Anjarlekar
Rasoul Etesami
R. Srikant
113
3
0
19 Sep 2023
Private Federated Learning with Autotuned Compression
Enayat Ullah
Christopher A. Choquette-Choo
Peter Kairouz
Sewoong Oh
FedML
68
8
0
20 Jul 2023
Data Structures for Density Estimation
Anders Aamand
Alexandr Andoni
Justin Y. Chen
Piotr Indyk
Shyam Narayanan
Sandeep Silwal
28
5
0
20 Jun 2023
PLAN: Variance-Aware Private Mean Estimation
Martin Aumüller
C. Lebeda
Boel Nelson
Rasmus Pagh
FedML
63
4
0
14 Jun 2023
Differentially Private Episodic Reinforcement Learning with Heavy-tailed Rewards
Yulian Wu
Xingyu Zhou
Sayak Ray Chowdhury
Di Wang
60
2
0
01 Jun 2023
A Polynomial Time, Pure Differentially Private Estimator for Binary Product Distributions
Vikrant Singhal
91
9
0
13 Apr 2023
Score Attack: A Lower Bound Technique for Optimal Differentially Private Learning
T. Tony Cai
Yichen Wang
Linjun Zhang
81
19
0
13 Mar 2023
Subset-Based Instance Optimality in Private Estimation
Travis Dick
Alex Kulesza
Ziteng Sun
A. Suresh
101
9
0
01 Mar 2023
On Private and Robust Bandits
Yulian Wu
Xingyu Zhou
Youming Tao
Di Wang
60
7
0
06 Feb 2023
From Robustness to Privacy and Back
Hilal Asi
Jonathan R. Ullman
Lydia Zakynthinou
83
30
0
03 Feb 2023
Continual Mean Estimation Under User-Level Privacy
Anand George
Lekshmi Ramesh
A. V. Singh
Himanshu Tyagi
FedML
65
9
0
20 Dec 2022
Privately Estimating a Gaussian: Efficient, Robust and Optimal
Daniel Alabi
Pravesh Kothari
Pranay Tankala
Prayaag Venkat
Fred Zhang
123
0
0
15 Dec 2022
Robustness Implies Privacy in Statistical Estimation
Samuel B. Hopkins
Gautam Kamath
Mahbod Majid
Shyam Narayanan
102
57
0
09 Dec 2022
Privacy Induces Robustness: Information-Computation Gaps and Sparse Mean Estimation
Kristian Georgiev
Samuel B. Hopkins
FedML
90
24
0
01 Nov 2022
Instance-Optimal Differentially Private Estimation
Audra McMillan
Adam D. Smith
Jonathan R. Ullman
55
6
0
28 Oct 2022
Differentially private multivariate medians
Kelly Ramsay
Aukosh Jagannath
Shojaéddin Chenouri
60
4
0
12 Oct 2022
On the Impossible Safety of Large AI Models
El-Mahdi El-Mhamdi
Sadegh Farhadkhani
R. Guerraoui
Nirupam Gupta
L. Hoang
Rafael Pinot
Sébastien Rouault
John Stephan
106
33
0
30 Sep 2022
Private Stochastic Optimization With Large Worst-Case Lipschitz Parameter: Optimal Rates for (Non-Smooth) Convex Losses and Extension to Non-Convex Losses
Andrew Lowy
Meisam Razaviyayn
86
13
0
15 Sep 2022
Archimedes Meets Privacy: On Privately Estimating Quantiles in High Dimensions Under Minimal Assumptions
Omri Ben-Eliezer
Dan Mikulincer
Ilias Zadik
FedML
90
7
0
15 Aug 2022
Efficient Private SCO for Heavy-Tailed Data via Clipping
Chenhan Jin
Kaiwen Zhou
Bo Han
Ming Yang
James Cheng
37
1
0
27 Jun 2022
Differentially Private Maximal Information Coefficients
John Lazarsfeld
Aaron Johnson
Emmanuel Adéníran
18
3
0
21 Jun 2022
Algorithms for bounding contribution for histogram estimation under user-level privacy
Yuhan Liu
A. Suresh
Wennan Zhu
Peter Kairouz
Marco Gruteser
52
9
0
07 Jun 2022
DP-PCA: Statistically Optimal and Differentially Private PCA
Xiyang Liu
Weihao Kong
Prateek Jain
Sewoong Oh
127
24
0
27 May 2022
New Lower Bounds for Private Estimation and a Generalized Fingerprinting Lemma
Gautam Kamath
Argyris Mouzakis
Vikrant Singhal
FedML
88
30
0
17 May 2022
Private High-Dimensional Hypothesis Testing
Shyam Narayanan
FedML
80
12
0
03 Mar 2022
Nonparametric extensions of randomized response for private confidence sets
Ian Waudby-Smith
Zhiwei Steven Wu
Aaditya Ramdas
81
9
0
17 Feb 2022
Differentially Private
ℓ
1
\ell_1
ℓ
1
-norm Linear Regression with Heavy-tailed Data
Di Wang
Jinhui Xu
42
7
0
10 Jan 2022
Optimal and Differentially Private Data Acquisition: Central and Local Mechanisms
Alireza Fallah
A. Makhdoumi
Azarakhsh Malekian
Asuman Ozdaglar
FedML
95
32
0
10 Jan 2022
Differentially-Private Clustering of Easy Instances
E. Cohen
Haim Kaplan
Yishay Mansour
Uri Stemmer
Eliad Tsfadia
71
25
0
29 Dec 2021
Private Robust Estimation by Stabilizing Convex Relaxations
Pravesh Kothari
Pasin Manurangsi
A. Velingker
71
47
0
07 Dec 2021
1
2
Next