Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2002.10940
Cited By
Stochastic-Sign SGD for Federated Learning with Theoretical Guarantees
25 February 2020
Richeng Jin
Yufan Huang
Xiaofan He
H. Dai
Tianfu Wu
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Stochastic-Sign SGD for Federated Learning with Theoretical Guarantees"
34 / 34 papers shown
Title
Privacy Preserving Machine Learning Model Personalization through Federated Personalized Learning
Md. Tanzib Hosain
Asif Zaman
Md. Shahriar Sajid
Shadman Sakeeb Khan
Shanjida Akter
38
0
0
03 May 2025
On the Byzantine Fault Tolerance of signSGD with Majority Vote
Emanuele Mengoli
Luzius Moll
Virgilio Strozzi
El-Mahdi El-Mhamdi
AAML
FedML
50
0
0
26 Feb 2025
Masked Random Noise for Communication Efficient Federaetd Learning
Shiwei Li
Yingyi Cheng
Haozhao Wang
Xing Tang
Shijie Xu
Weihong Luo
Yuhua Li
Dugang Liu
Xiuqiang He
and Ruixuan Li
FedML
43
1
0
06 Aug 2024
Efficient Sign-Based Optimization: Accelerating Convergence via Variance Reduction
Wei Jiang
Sifan Yang
Wenhao Yang
Lijun Zhang
21
3
0
01 Jun 2024
Aggressive or Imperceptible, or Both: Network Pruning Assisted Hybrid Byzantines in Federated Learning
Emre Ozfatura
Kerem Ozfatura
Alptekin Kupcu
Deniz Gunduz
AAML
30
0
0
09 Apr 2024
Privacy Amplification for the Gaussian Mechanism via Bounded Support
Shengyuan Hu
Saeed Mahloujifar
Virginia Smith
Kamalika Chaudhuri
Chuan Guo
FedML
24
1
0
07 Mar 2024
TernaryVote: Differentially Private, Communication Efficient, and Byzantine Resilient Distributed Optimization on Heterogeneous Data
Richeng Jin
Yujie Gu
Kai Yue
Xiaofan He
Zhaoyang Zhang
Huaiyu Dai
FedML
20
0
0
16 Feb 2024
SignSGD with Federated Defense: Harnessing Adversarial Attacks through Gradient Sign Decoding
Chanho Park
Namyoon Lee
FedML
AAML
22
1
0
02 Feb 2024
Convergence of Sign-based Random Reshuffling Algorithms for Nonconvex Optimization
Zhen Qin
Zhishuai Liu
Pan Xu
18
1
0
24 Oct 2023
Rethinking SIGN Training: Provable Nonconvex Acceleration without First- and Second-Order Gradient Lipschitz
Tao Sun
Congliang Chen
Peng Qiao
Li Shen
Xinwang Liu
Dongsheng Li
26
3
0
23 Oct 2023
Privacy Preserving Federated Learning with Convolutional Variational Bottlenecks
Daniel Scheliga
Patrick Mäder
M. Seeland
FedML
AAML
18
5
0
08 Sep 2023
Binary Federated Learning with Client-Level Differential Privacy
Lumin Liu
Jun Zhang
Shenghui Song
Khaled B. Letaief
FedML
13
2
0
07 Aug 2023
Online Learning with Adversaries: A Differential-Inclusion Analysis
Swetha Ganesh
Alexandre Reiffers
Gugan Thoppe
FedML
29
3
0
04 Apr 2023
Byzantine-Resilient Federated Learning at Edge
Youming Tao
Sijia Cui
Wenlu Xu
Haofei Yin
Dongxiao Yu
W. Liang
Xiuzhen Cheng
FedML
15
19
0
18 Mar 2023
Magnitude Matters: Fixing SIGNSGD Through Magnitude-Aware Sparsification in the Presence of Data Heterogeneity
Richeng Jin
Xiaofan He
C. Zhong
Zhaoyang Zhang
Tony Q. S. Quek
H. Dai
FedML
21
1
0
19 Feb 2023
Breaking the Communication-Privacy-Accuracy Tradeoff with
f
f
f
-Differential Privacy
Richeng Jin
Z. Su
C. Zhong
Zhaoyang Zhang
Tony Q. S. Quek
H. Dai
FedML
11
2
0
19 Feb 2023
z
z
z
-SignFedAvg: A Unified Stochastic Sign-based Compression for Federated Learning
Zhiwei Tang
Yanmeng Wang
Tsung-Hui Chang
FedML
11
14
0
06 Feb 2023
DoCoFL: Downlink Compression for Cross-Device Federated Learning
Ron Dorfman
S. Vargaftik
Y. Ben-Itzhak
Kfir Y. Levy
FedML
16
18
0
01 Feb 2023
Analysis of Error Feedback in Federated Non-Convex Optimization with Biased Compression
Xiaoyun Li
Ping Li
FedML
24
4
0
25 Nov 2022
Privacy-Aware Compression for Federated Learning Through Numerical Mechanism Design
Chuan Guo
Kamalika Chaudhuri
Pierre Stock
Michael G. Rabbat
FedML
17
7
0
08 Nov 2022
Federated Learning and Meta Learning: Approaches, Applications, and Directions
Xiaonan Liu
Yansha Deng
Arumugam Nallanathan
M. Bennis
46
32
0
24 Oct 2022
ScionFL: Efficient and Robust Secure Quantized Aggregation
Y. Ben-Itzhak
Helen Mollering
Benny Pinkas
T. Schneider
Ajith Suresh
Oleksandr Tkachenko
S. Vargaftik
Christian Weinert
Hossein Yalame
Avishay Yanai
19
6
0
13 Oct 2022
Distributed Non-Convex Optimization with One-Bit Compressors on Heterogeneous Data: Efficient and Resilient Algorithms
Ming Xiang
Lili Su
FedML
16
2
0
03 Oct 2022
A Secure Federated Learning Framework for Residential Short Term Load Forecasting
Muhammad Akbar Husnoo
A. Anwar
N. Hosseinzadeh
S. Islam
A. N. Mahmood
R. Doss
54
33
0
29 Sep 2022
Detection and Mitigation of Byzantine Attacks in Distributed Training
Konstantinos Konstantinidis
Namrata Vaswani
Aditya Ramamoorthy
AAML
18
0
0
17 Aug 2022
Practical Vertical Federated Learning with Unsupervised Representation Learning
Zhaomin Wu
Q. Li
Bingsheng He
FedML
22
36
0
13 Aug 2022
Towards Efficient Communications in Federated Learning: A Contemporary Survey
Zihao Zhao
Yuzhu Mao
Yang Liu
Linqi Song
Ouyang Ye
Xinlei Chen
Wenbo Ding
FedML
43
59
0
02 Aug 2022
Communication-Efficient Federated Learning With Data and Client Heterogeneity
Hossein Zakerinia
Shayan Talaei
Giorgi Nadiradze
Dan Alistarh
FedML
11
7
0
20 Jun 2022
Byzantine Fault Tolerance in Distributed Machine Learning : a Survey
Djamila Bouhata
Hamouma Moumen
Moumen Hamouma
Ahcène Bounceur
AI4CE
23
7
0
05 May 2022
Bridging Differential Privacy and Byzantine-Robustness via Model Aggregation
Heng Zhu
Qing Ling
FedML
20
23
0
29 Apr 2022
Privacy-Aware Compression for Federated Data Analysis
Kamalika Chaudhuri
Chuan Guo
Michael G. Rabbat
FedML
20
27
0
15 Mar 2022
Trusted AI in Multi-agent Systems: An Overview of Privacy and Security for Distributed Learning
Chuan Ma
Jun Li
Kang Wei
Bo Liu
Ming Ding
Long Yuan
Zhu Han
H. Vincent Poor
39
42
0
18 Feb 2022
Maximizing Communication Efficiency for Large-scale Training via 0/1 Adam
Yucheng Lu
Conglong Li
Minjia Zhang
Christopher De Sa
Yuxiong He
OffRL
AI4CE
14
20
0
12 Feb 2022
Federated Learning via Plurality Vote
Kai Yue
Richeng Jin
Chau-Wai Wong
H. Dai
FedML
16
8
0
06 Oct 2021
1