ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.11531
  4. Cited By
A general framework for ensemble distribution distillation
v1v2 (latest)

A general framework for ensemble distribution distillation

International Workshop on Machine Learning for Signal Processing (MLSP), 2020
26 February 2020
Jakob Lindqvist
Amanda Olmin
Fredrik Lindsten
Lennart Svensson
    FedMLUQCVBDL
ArXiv (abs)PDFHTML

Papers citing "A general framework for ensemble distribution distillation"

15 / 15 papers shown
Ensemble Distribution Distillation for Self-Supervised Human Activity Recognition
Ensemble Distribution Distillation for Self-Supervised Human Activity Recognition
Matthew Nolan
Lina Yao
Robert Davidson
152
0
0
10 Sep 2025
A Comprehensive Survey on Evidential Deep Learning and Its Applications
A Comprehensive Survey on Evidential Deep Learning and Its Applications
Junyu Gao
Mengyuan Chen
Liangyu Xiang
Changsheng Xu
EDLBDLUQCV
456
15
0
07 Sep 2024
Gaussian Mixture based Evidential Learning for Stereo Matching
Gaussian Mixture based Evidential Learning for Stereo Matching
Weide Liu
Xingxing Wang
Lu Wang
Jun Cheng
Fayao Liu
Xulei Yang
245
0
0
05 Aug 2024
Accuracy-Preserving Calibration via Statistical Modeling on Probability Simplex
Accuracy-Preserving Calibration via Statistical Modeling on Probability Simplex
Yasushi Esaki
Akihiro Nakamura
Keisuke Kawano
Ryoko Tokuhisa
Takuro Kutsuna
367
3
0
21 Feb 2024
Reliability Quantification of Deep Reinforcement Learning-based Control
Reliability Quantification of Deep Reinforcement Learning-based Control
Hitoshi Yoshioka
Hirotada Hashimoto
198
0
0
29 Sep 2023
Uncertainty Quantification for Image-based Traffic Prediction across
  Cities
Uncertainty Quantification for Image-based Traffic Prediction across Cities
Alexander Timans
Nina Wiedemann
Nishant Kumar
Ye Hong
Martin Raubal
215
1
0
11 Aug 2023
ELFNet: Evidential Local-global Fusion for Stereo Matching
ELFNet: Evidential Local-global Fusion for Stereo MatchingIEEE International Conference on Computer Vision (ICCV), 2023
Jieming Lou
Weide Liu
Zhu Chen
Fayao Liu
Jun Cheng
255
35
0
01 Aug 2023
Logit-Based Ensemble Distribution Distillation for Robust Autoregressive
  Sequence Uncertainties
Logit-Based Ensemble Distribution Distillation for Robust Autoregressive Sequence UncertaintiesConference on Uncertainty in Artificial Intelligence (UAI), 2023
Yassir Fathullah
Guoxuan Xia
Mark Gales
UQCV
195
6
0
17 May 2023
Self-Aware Trajectory Prediction for Safe Autonomous Driving
Self-Aware Trajectory Prediction for Safe Autonomous Driving
Wenbo Shao
Jun Li
Hong Wang
236
12
0
16 May 2023
Compensation Learning in Semantic Segmentation
Compensation Learning in Semantic Segmentation
Timo Kaiser
Christoph Reinders
Bodo Rosenhahn
NoLa
215
6
0
26 Apr 2023
Knowledge Distillation from Multiple Foundation Models for End-to-End
  Speech Recognition
Knowledge Distillation from Multiple Foundation Models for End-to-End Speech Recognition
Xiaoyu Yang
Qiujia Li
Chuxu Zhang
P. Woodland
206
11
0
20 Mar 2023
TEDL: A Two-stage Evidential Deep Learning Method for Classification
  Uncertainty Quantification
TEDL: A Two-stage Evidential Deep Learning Method for Classification Uncertainty Quantification
Xue Li
Wei Shen
Denis Xavier Charles
UQCVEDL
222
3
0
12 Sep 2022
Simple Regularisation for Uncertainty-Aware Knowledge Distillation
Simple Regularisation for Uncertainty-Aware Knowledge Distillation
Martin Ferianc
Miguel R. D. Rodrigues
UQCV
164
2
0
19 May 2022
A Survey of Uncertainty in Deep Neural Networks
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDLUQCVOOD
566
1,534
0
07 Jul 2021
MixMo: Mixing Multiple Inputs for Multiple Outputs via Deep Subnetworks
MixMo: Mixing Multiple Inputs for Multiple Outputs via Deep SubnetworksIEEE International Conference on Computer Vision (ICCV), 2021
Alexandre Ramé
Rémy Sun
Matthieu Cord
UQCV
352
64
0
10 Mar 2021
1
Page 1 of 1