Papers
Communities
Organizations
Events
Blog
Pricing
Feedback
Contact Sales
Search
Open menu
Home
Papers
All Papers
Title
Home
Papers
2002.11651
Cited By
v1
v2 (latest)
Fair Learning with Private Demographic Data
26 February 2020
Hussein Mozannar
Mesrob I. Ohannessian
Nathan Srebro
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Fair Learning with Private Demographic Data"
49 / 49 papers shown
Title
Quantifying Query Fairness Under Unawareness
Thomas Jaenich
Alejandro Moreo
Alessandro Fabris
Graham McDonald
Andrea Esuli
Iadh Ounis
Fabrizio Sebastiani
117
0
0
04 Jun 2025
Private Rate-Constrained Optimization with Applications to Fair Learning
Mohammad Yaghini
Tudor Cebere
Michael Menart
A. Bellet
Nicolas Papernot
120
0
0
28 May 2025
Discrimination-free Insurance Pricing with Privatized Sensitive Attributes
Tianhe Zhang
Suhan Liu
Peng Shi
FaML
153
0
0
16 Apr 2025
PFGuard: A Generative Framework with Privacy and Fairness Safeguards
Soyeon Kim
Yuji Roh
Geon Heo
Steven Euijong Whang
167
0
0
03 Oct 2024
Differentially Private Data Release on Graphs: Inefficiencies and Unfairness
Ferdinando Fioretto
Diptangshu Sen
Juba Ziani
91
1
0
08 Aug 2024
Linkage on Security, Privacy and Fairness in Federated Learning: New Balances and New Perspectives
Linlin Wang
Tianqing Zhu
Wanlei Zhou
Philip S. Yu
95
3
0
16 Jun 2024
A Systematic and Formal Study of the Impact of Local Differential Privacy on Fairness: Preliminary Results
K. Makhlouf
Tamara Stefanovic
Héber H. Arcolezi
C. Palamidessi
100
4
0
23 May 2024
Differentially Private Post-Processing for Fair Regression
Ruicheng Xian
Qiaobo Li
Gautam Kamath
Han Zhao
133
4
0
07 May 2024
Differentially Private Fair Binary Classifications
Hrad Ghoukasian
S. Asoodeh
FaML
124
3
0
23 Feb 2024
Fairness Risks for Group-conditionally Missing Demographics
Kaiqi Jiang
Wenzhe Fan
Mao Li
Xinhua Zhang
271
0
0
20 Feb 2024
Regulation Games for Trustworthy Machine Learning
Mohammad Yaghini
Patty Liu
Franziska Boenisch
Nicolas Papernot
FaML
73
3
0
05 Feb 2024
SoK: Taming the Triangle -- On the Interplays between Fairness, Interpretability and Privacy in Machine Learning
Julien Ferry
Ulrich Aïvodji
Sébastien Gambs
Marie-José Huguet
Mohamed Siala
FaML
104
7
0
22 Dec 2023
On the Impact of Multi-dimensional Local Differential Privacy on Fairness
K. Makhlouf
Héber H. Arcolezi
Sami Zhioua
G. B. Brahim
C. Palamidessi
120
8
0
07 Dec 2023
Toward the Tradeoffs between Privacy, Fairness and Utility in Federated Learning
Kangkang Sun
Xiaojin Zhang
Xi Lin
Gaolei Li
Jing Wang
Jianhua Li
98
5
0
30 Nov 2023
Estimating and Implementing Conventional Fairness Metrics With Probabilistic Protected Features
Hadi Elzayn
Emily Black
Patrick Vossler
Nathanael Jo
Jacob Goldin
Daniel E. Ho
79
6
0
02 Oct 2023
Unlocking Accuracy and Fairness in Differentially Private Image Classification
Leonard Berrada
Soham De
J. Shen
Jamie Hayes
Robert Stanforth
David Stutz
Pushmeet Kohli
Samuel L. Smith
Borja Balle
100
16
0
21 Aug 2023
When Fair Classification Meets Noisy Protected Attributes
Avijit Ghosh
Pablo Kvitca
Chris L. Wilson
FaML
83
10
0
06 Jul 2023
Privacy and Fairness in Federated Learning: on the Perspective of Trade-off
Huiqiang Chen
Tianqing Zhu
Tao Zhang
Wanlei Zhou
Philip S. Yu
FedML
104
60
0
25 Jun 2023
Sampling Individually-Fair Rankings that are Always Group Fair
Sruthi Gorantla
Anay Mehrotra
Amit Deshpande
Anand Louis
FedML
FaML
88
4
0
21 Jun 2023
Survey of Trustworthy AI: A Meta Decision of AI
Caesar Wu
Yuan-Fang Li
Pascal Bouvry
142
3
0
01 Jun 2023
FairDP: Certified Fairness with Differential Privacy
K. Tran
Ferdinando Fioretto
Issa M. Khalil
My T. Thai
Nhathai Phan
138
0
0
25 May 2023
On the Fairness Impacts of Private Ensembles Models
Cuong Tran
Ferdinando Fioretto
126
6
0
19 May 2023
(Local) Differential Privacy has NO Disparate Impact on Fairness
Héber H. Arcolezi
K. Makhlouf
C. Palamidessi
135
7
0
25 Apr 2023
Learning with Impartiality to Walk on the Pareto Frontier of Fairness, Privacy, and Utility
Mohammad Yaghini
Patty Liu
Franziska Boenisch
Nicolas Papernot
FedML
FaML
136
10
0
17 Feb 2023
Group Fairness with Uncertainty in Sensitive Attributes
Abhin Shah
Maohao Shen
J. Jon Ryu
Subhro Das
P. Sattigeri
Yuheng Bu
G. Wornell
FaML
96
5
0
16 Feb 2023
Hyper-parameter Tuning for Fair Classification without Sensitive Attribute Access
A. Veldanda
Shubham Sharma
Sanghamitra Dutta
Alan Mishler
S. Garg
125
6
0
02 Feb 2023
Unraveling Privacy Risks of Individual Fairness in Graph Neural Networks
He Zhang
Lizhen Qu
Shirui Pan
164
17
0
30 Jan 2023
Fair Ranking with Noisy Protected Attributes
Anay Mehrotra
Nisheeth K. Vishnoi
109
20
0
30 Nov 2022
Differential Privacy has Bounded Impact on Fairness in Classification
Paul Mangold
Michaël Perrot
A. Bellet
Marc Tommasi
133
21
0
28 Oct 2022
Stochastic Differentially Private and Fair Learning
Andrew Lowy
Devansh Gupta
Meisam Razaviyayn
FaML
FedML
110
15
0
17 Oct 2022
Outlier-Robust Group Inference via Gradient Space Clustering
Yuchen Zeng
Kristjan Greenewald
Kangwook Lee
Justin Solomon
Mikhail Yurochkin
75
2
0
13 Oct 2022
When Fairness Meets Privacy: Fair Classification with Semi-Private Sensitive Attributes
Canyu Chen
Yueqing Liang
Xiongxiao Xu
Shangyu Xie
A. Kundu
Ali Payani
Yuan Hong
Kai Shu
74
7
0
18 Jul 2022
Disparate Impact in Differential Privacy from Gradient Misalignment
Maria S. Esipova
Atiyeh Ashari Ghomi
Yaqiao Luo
Jesse C. Cresswell
159
34
0
15 Jun 2022
SF-PATE: Scalable, Fair, and Private Aggregation of Teacher Ensembles
Cuong Tran
Keyu Zhu
Ferdinando Fioretto
Pascal Van Hentenryck
95
12
0
11 Apr 2022
Differential Privacy and Fairness in Decisions and Learning Tasks: A Survey
Ferdinando Fioretto
Cuong Tran
Pascal Van Hentenryck
Keyu Zhu
FaML
105
67
0
16 Feb 2022
Fair Sequential Selection Using Supervised Learning Models
Mohammad Mahdi Khalili
Xueru Zhang
Mahed Abroshan
FaML
82
22
0
26 Oct 2021
Fairness-Driven Private Collaborative Machine Learning
Dana Pessach
Tamir Tassa
E. Shmueli
FedML
86
7
0
29 Sep 2021
A Sociotechnical View of Algorithmic Fairness
Mateusz Dolata
Stefan Feuerriegel
Gerhard Schwabe
FaML
99
105
0
27 Sep 2021
A Fairness Analysis on Private Aggregation of Teacher Ensembles
Cuong Tran
M. H. Dinh
Kyle Beiter
Ferdinando Fioretto
102
12
0
17 Sep 2021
Federated Learning Meets Fairness and Differential Privacy
P. Manisha
Sankarshan Damle
Sujit Gujar
FedML
105
21
0
23 Aug 2021
Statistical Guarantees for Fairness Aware Plug-In Algorithms
Drona Khurana
S. Ravichandran
Sparsh Jain
N. Edakunni
FaML
129
0
0
27 Jul 2021
Differentially Empirical Risk Minimization under the Fairness Lens
Cuong Tran
My H. Dinh
Ferdinando Fioretto
107
48
0
04 Jun 2021
Fairly Private Through Group Tagging and Relation Impact
Poushali Sengupta
Subhankar Mishra
88
1
0
15 May 2021
A Stochastic Optimization Framework for Fair Risk Minimization
Andrew Lowy
Sina Baharlouei
Rakesh Pavan
Meisam Razaviyayn
Ahmad Beirami
FaML
163
23
0
24 Feb 2021
Fairness-Aware PAC Learning from Corrupted Data
Nikola Konstantinov
Christoph H. Lampert
122
21
0
11 Feb 2021
Improving Fairness and Privacy in Selection Problems
Mohammad Mahdi Khalili
Xueru Zhang
Mahed Abroshan
Somayeh Sojoudi
166
28
0
07 Dec 2020
Differentially Private and Fair Deep Learning: A Lagrangian Dual Approach
Cuong Tran
Ferdinando Fioretto
Pascal Van Hentenryck
FedML
112
83
0
26 Sep 2020
Balance is key: Private median splits yield high-utility random trees
Shorya Consul
Sinead Williamson
125
2
0
15 Jun 2020
Robust Optimization for Fairness with Noisy Protected Groups
S. Wang
Wenshuo Guo
Harikrishna Narasimhan
Andrew Cotter
Maya R. Gupta
Michael I. Jordan
NoLa
98
122
0
21 Feb 2020
1