ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.11887
  4. Cited By
Using a thousand optimization tasks to learn hyperparameter search
  strategies

Using a thousand optimization tasks to learn hyperparameter search strategies

27 February 2020
Luke Metz
Niru Maheswaranathan
Ruoxi Sun
C. Freeman
Ben Poole
Jascha Narain Sohl-Dickstein
ArXivPDFHTML

Papers citing "Using a thousand optimization tasks to learn hyperparameter search strategies"

18 / 18 papers shown
Title
One Search Fits All: Pareto-Optimal Eco-Friendly Model Selection
One Search Fits All: Pareto-Optimal Eco-Friendly Model Selection
Filippo Betello
Antonio Purificato
Vittoria Vineis
Gabriele Tolomei
Fabrizio Silvestri
41
0
0
02 May 2025
Training neural networks faster with minimal tuning using pre-computed lists of hyperparameters for NAdamW
Sourabh Medapati
Priya Kasimbeg
Shankar Krishnan
Naman Agarwal
George E. Dahl
57
0
0
06 Mar 2025
Learning Versatile Optimizers on a Compute Diet
Learning Versatile Optimizers on a Compute Diet
A. Moudgil
Boris Knyazev
Guillaume Lajoie
Eugene Belilovsky
141
0
0
22 Jan 2025
In-Context Freeze-Thaw Bayesian Optimization for Hyperparameter
  Optimization
In-Context Freeze-Thaw Bayesian Optimization for Hyperparameter Optimization
Herilalaina Rakotoarison
Steven Adriaensen
Neeratyoy Mallik
Samir Garibov
Eddie Bergman
Frank Hutter
AI4CE
32
9
0
25 Apr 2024
Efficient Bayesian Learning Curve Extrapolation using Prior-Data Fitted
  Networks
Efficient Bayesian Learning Curve Extrapolation using Prior-Data Fitted Networks
Steven Adriaensen
Herilalaina Rakotoarison
Samuel G. Müller
Frank Hutter
BDL
31
19
0
31 Oct 2023
Deep Pipeline Embeddings for AutoML
Deep Pipeline Embeddings for AutoML
Sebastian Pineda Arango
Josif Grabocka
28
2
0
23 May 2023
General-Purpose In-Context Learning by Meta-Learning Transformers
General-Purpose In-Context Learning by Meta-Learning Transformers
Louis Kirsch
James Harrison
Jascha Narain Sohl-Dickstein
Luke Metz
34
72
0
08 Dec 2022
VeLO: Training Versatile Learned Optimizers by Scaling Up
VeLO: Training Versatile Learned Optimizers by Scaling Up
Luke Metz
James Harrison
C. Freeman
Amil Merchant
Lucas Beyer
...
Naman Agrawal
Ben Poole
Igor Mordatch
Adam Roberts
Jascha Narain Sohl-Dickstein
29
60
0
17 Nov 2022
A Closer Look at Learned Optimization: Stability, Robustness, and
  Inductive Biases
A Closer Look at Learned Optimization: Stability, Robustness, and Inductive Biases
James Harrison
Luke Metz
Jascha Narain Sohl-Dickstein
47
22
0
22 Sep 2022
Practical tradeoffs between memory, compute, and performance in learned
  optimizers
Practical tradeoffs between memory, compute, and performance in learned optimizers
Luke Metz
C. Freeman
James Harrison
Niru Maheswaranathan
Jascha Narain Sohl-Dickstein
33
32
0
22 Mar 2022
HPOBench: A Collection of Reproducible Multi-Fidelity Benchmark Problems
  for HPO
HPOBench: A Collection of Reproducible Multi-Fidelity Benchmark Problems for HPO
Katharina Eggensperger
Philip Muller
Neeratyoy Mallik
Matthias Feurer
René Sass
Aaron Klein
Noor H. Awad
Marius Lindauer
Frank Hutter
46
100
0
14 Sep 2021
Hyperparameter Transfer Across Developer Adjustments
Hyperparameter Transfer Across Developer Adjustments
Daniel Stoll
Jörg K.H. Franke
Diane Wagner
Simon Selg
Frank Hutter
27
12
0
25 Oct 2020
Tasks, stability, architecture, and compute: Training more effective
  learned optimizers, and using them to train themselves
Tasks, stability, architecture, and compute: Training more effective learned optimizers, and using them to train themselves
Luke Metz
Niru Maheswaranathan
C. Freeman
Ben Poole
Jascha Narain Sohl-Dickstein
22
62
0
23 Sep 2020
Auto-Sklearn 2.0: Hands-free AutoML via Meta-Learning
Auto-Sklearn 2.0: Hands-free AutoML via Meta-Learning
Matthias Feurer
Katharina Eggensperger
Stefan Falkner
Marius Lindauer
Frank Hutter
35
266
0
08 Jul 2020
Dynamical Isometry and a Mean Field Theory of CNNs: How to Train
  10,000-Layer Vanilla Convolutional Neural Networks
Dynamical Isometry and a Mean Field Theory of CNNs: How to Train 10,000-Layer Vanilla Convolutional Neural Networks
Lechao Xiao
Yasaman Bahri
Jascha Narain Sohl-Dickstein
S. Schoenholz
Jeffrey Pennington
220
348
0
14 Jun 2018
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language
  Understanding
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding
Alex Jinpeng Wang
Amanpreet Singh
Julian Michael
Felix Hill
Omer Levy
Samuel R. Bowman
ELM
297
6,956
0
20 Apr 2018
Emergence of Locomotion Behaviours in Rich Environments
Emergence of Locomotion Behaviours in Rich Environments
N. Heess
TB Dhruva
S. Sriram
Jay Lemmon
J. Merel
...
Tom Erez
Ziyun Wang
S. M. Ali Eslami
Martin Riedmiller
David Silver
131
928
0
07 Jul 2017
Neural Architecture Search with Reinforcement Learning
Neural Architecture Search with Reinforcement Learning
Barret Zoph
Quoc V. Le
271
5,329
0
05 Nov 2016
1