Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2002.12242
Cited By
v1
v2 (latest)
Lipschitz and Comparator-Norm Adaptivity in Online Learning
27 February 2020
Zakaria Mhammedi
Wouter M. Koolen
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Lipschitz and Comparator-Norm Adaptivity in Online Learning"
44 / 44 papers shown
Title
Analysis of an Idealized Stochastic Polyak Method and its Application to Black-Box Model Distillation
Robert M. Gower
Guillaume Garrigos
Nicolas Loizou
Dimitris Oikonomou
Konstantin Mishchenko
Fabian Schaipp
83
1
0
02 Apr 2025
An Equivalence Between Static and Dynamic Regret Minimization
Andrew Jacobsen
Francesco Orabona
102
4
0
03 Jun 2024
Fully Unconstrained Online Learning
Ashok Cutkosky
Zakaria Mhammedi
CLL
74
2
0
30 May 2024
Online Linear Regression in Dynamic Environments via Discounting
Andrew Jacobsen
Ashok Cutkosky
108
6
0
29 May 2024
Fast TRAC: A Parameter-Free Optimizer for Lifelong Reinforcement Learning
Aneesh Muppidi
Zhiyu Zhang
Heng Yang
78
6
0
26 May 2024
Dealing with unbounded gradients in stochastic saddle-point optimization
Gergely Neu
Nneka Okolo
85
5
0
21 Feb 2024
Best of Many in Both Worlds: Online Resource Allocation with Predictions under Unknown Arrival Model
Lin An
Andrew A. Li
Benjamin Moseley
Gabriel Visotsky
44
2
0
21 Feb 2024
The Price of Adaptivity in Stochastic Convex Optimization
Y. Carmon
Oliver Hinder
85
7
0
16 Feb 2024
Tuning-Free Stochastic Optimization
Ahmed Khaled
Chi Jin
62
9
0
12 Feb 2024
How Free is Parameter-Free Stochastic Optimization?
Amit Attia
Tomer Koren
ODL
99
8
0
05 Feb 2024
Discounted Adaptive Online Learning: Towards Better Regularization
Zhiyu Zhang
David Bombara
Heng Yang
64
9
0
05 Feb 2024
A simple uniformly optimal method without line search for convex optimization
Tianjiao Li
Guanghui Lan
107
25
0
16 Oct 2023
Improving Adaptive Online Learning Using Refined Discretization
Zhiyu Zhang
Heng Yang
Ashok Cutkosky
I. Paschalidis
62
6
0
27 Sep 2023
Normalized Gradients for All
Francesco Orabona
108
10
0
10 Aug 2023
Unconstrained Online Learning with Unbounded Losses
Andrew Jacobsen
Ashok Cutkosky
78
18
0
08 Jun 2023
Mechanic: A Learning Rate Tuner
Ashok Cutkosky
Aaron Defazio
Harsh Mehta
OffRL
127
18
0
31 May 2023
Parameter-free projected gradient descent
Evgenii Chzhen
Christophe Giraud
Gilles Stoltz
68
4
0
31 May 2023
DoWG Unleashed: An Efficient Universal Parameter-Free Gradient Descent Method
Ahmed Khaled
Konstantin Mishchenko
Chi Jin
ODL
86
28
0
25 May 2023
SGD with AdaGrad Stepsizes: Full Adaptivity with High Probability to Unknown Parameters, Unbounded Gradients and Affine Variance
Amit Attia
Tomer Koren
ODL
88
26
0
17 Feb 2023
DoG is SGD's Best Friend: A Parameter-Free Dynamic Step Size Schedule
Maor Ivgi
Oliver Hinder
Y. Carmon
ODL
157
66
0
08 Feb 2023
Optimal Stochastic Non-smooth Non-convex Optimization through Online-to-Non-convex Conversion
Ashok Cutkosky
Harsh Mehta
Francesco Orabona
105
34
0
07 Feb 2023
Unconstrained Dynamic Regret via Sparse Coding
Zhiyu Zhang
Ashok Cutkosky
I. Paschalidis
139
9
0
31 Jan 2023
Quasi-Newton Steps for Efficient Online Exp-Concave Optimization
Zakaria Mhammedi
Khashayar Gatmiry
57
7
0
02 Nov 2022
Parameter-free Regret in High Probability with Heavy Tails
Jiujia Zhang
Ashok Cutkosky
75
20
0
25 Oct 2022
Differentially Private Online-to-Batch for Smooth Losses
Qinzi Zhang
Hoang Tran
Ashok Cutkosky
FedML
79
5
0
12 Oct 2022
Exploiting the Curvature of Feasible Sets for Faster Projection-Free Online Learning
Zakaria Mhammedi
103
9
0
23 May 2022
Optimal Comparator Adaptive Online Learning with Switching Cost
Zhiyu Zhang
Ashok Cutkosky
I. Paschalidis
63
4
0
13 May 2022
Making SGD Parameter-Free
Y. Carmon
Oliver Hinder
98
47
0
04 May 2022
Projection-free Online Learning with Arbitrary Delays
Yuanyu Wan
Yibo Wang
Chang Yao
Wei-Wei Tu
Lijun Zhang
91
2
0
11 Apr 2022
Implicit Parameter-free Online Learning with Truncated Linear Models
Keyi Chen
Ashok Cutkosky
Francesco Orabona
80
10
0
19 Mar 2022
Parameter-free Mirror Descent
Andrew Jacobsen
Ashok Cutkosky
117
34
0
26 Feb 2022
Scale-free Unconstrained Online Learning for Curved Losses
J. Mayo
Hédi Hadiji
T. Erven
82
13
0
11 Feb 2022
PDE-Based Optimal Strategy for Unconstrained Online Learning
Zhiyu Zhang
Ashok Cutkosky
I. Paschalidis
100
27
0
19 Jan 2022
Isotuning With Applications To Scale-Free Online Learning
Laurent Orseau
Marcus Hutter
76
6
0
29 Dec 2021
Logarithmic Regret from Sublinear Hints
Aditya Bhaskara
Ashok Cutkosky
Ravi Kumar
Manish Purohit
92
19
0
09 Nov 2021
Tight Concentrations and Confidence Sequences from the Regret of Universal Portfolio
Francesco Orabona
Kwang-Sung Jun
118
42
0
27 Oct 2021
Parameter-free Gradient Temporal Difference Learning
Andrew Jacobsen
Alan Chan
OffRL
62
2
0
10 May 2021
Distributed Online Learning for Joint Regret with Communication Constraints
Dirk van der Hoeven
Hédi Hadiji
T. Erven
64
5
0
15 Feb 2021
MetaGrad: Adaptation using Multiple Learning Rates in Online Learning
T. Erven
Wouter M. Koolen
Dirk van der Hoeven
ODL
107
23
0
12 Feb 2021
Adversarial Tracking Control via Strongly Adaptive Online Learning with Memory
Zhiyu Zhang
Ashok Cutkosky
I. Paschalidis
94
15
0
02 Feb 2021
Impossible Tuning Made Possible: A New Expert Algorithm and Its Applications
Liyu Chen
Haipeng Luo
Chen-Yu Wei
115
45
0
01 Feb 2021
Risk-Monotonicity in Statistical Learning
Zakaria Mhammedi
134
8
0
28 Nov 2020
Online Linear Optimization with Many Hints
Aditya Bhaskara
Ashok Cutkosky
Ravi Kumar
Manish Purohit
147
18
0
06 Oct 2020
Better Parameter-free Stochastic Optimization with ODE Updates for Coin-Betting
K. Chen
John Langford
Francesco Orabona
89
22
0
12 Jun 2020
1