Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
2002.12688
Cited By
Decentralized gradient methods: does topology matter?
International Conference on Artificial Intelligence and Statistics (AISTATS), 2020
28 February 2020
Giovanni Neglia
Chuan Xu
Don Towsley
G. Calbi
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Decentralized gradient methods: does topology matter?"
34 / 34 papers shown
Title
Efficiency Boost in Decentralized Optimization: Reimagining Neighborhood Aggregation with Minimal Overhead
Durgesh Kalwar
Mayank Baranwal
H. Khadilkar
68
0
0
26 Sep 2025
Towards Heterogeneity-Aware and Energy-Efficient Topology Optimization for Decentralized Federated Learning in Edge Environment
Yuze Liu
Tiehua Zhang
Zhishu Shen
Libing Wu
Shiping Chen
Jiong Jin
76
1
0
01 Aug 2025
Communication Optimization for Decentralized Learning atop Bandwidth-limited Edge Networks
International Conference on Computer Communications and Networks (ICCCN), 2025
Tingyang Sun
Tuan Nguyen
Ting He
417
0
0
16 Apr 2025
Fully First-Order Methods for Decentralized Bilevel Optimization
Xiaoyu Wang
Xuxing Chen
Shiqian Ma
Tong Zhang
306
2
0
25 Oct 2024
From promise to practice: realizing high-performance decentralized training
International Conference on Learning Representations (ICLR), 2024
Zesen Wang
Jiaojiao Zhang
Xuyang Wu
M. Johansson
258
0
0
15 Oct 2024
Does Worst-Performing Agent Lead the Pack? Analyzing Agent Dynamics in Unified Distributed SGD
Neural Information Processing Systems (NeurIPS), 2024
Jie Hu
Yi-Ting Ma
Do Young Eun
FedML
245
2
0
26 Sep 2024
Overlay-based Decentralized Federated Learning in Bandwidth-limited Networks
ACM Interational Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), 2024
Yudi Huang
Tingyang Sun
Ting He
130
3
0
08 Aug 2024
Problem-Parameter-Free Decentralized Nonconvex Stochastic Optimization
Jiaxiang Li
Xuxing Chen
Shiqian Ma
Mingyi Hong
ODL
139
7
0
13 Feb 2024
Faster Convergence with Less Communication: Broadcast-Based Subgraph Sampling for Decentralized Learning over Wireless Networks
IEEE Open Journal of the Communications Society (OJ-COMSOC), 2024
Daniel Pérez Herrera
Zheng Chen
Erik G. Larsson
335
2
0
24 Jan 2024
DePRL: Achieving Linear Convergence Speedup in Personalized Decentralized Learning with Shared Representations
Efstathia Soufleri
Gang Yan
Maroun Touma
Jian Li
207
9
0
17 Dec 2023
Decentralized Learning over Wireless Networks with Broadcast-Based Subgraph Sampling
Daniel Pérez Herrera
Zheng Chen
Erik G. Larsson
205
2
0
24 Oct 2023
FedDec: Peer-to-peer Aided Federated Learning
International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2023
Marina Costantini
Giovanni Neglia
T. Spyropoulos
FedML
98
2
0
11 Jun 2023
Straggler-Resilient Decentralized Learning via Adaptive Asynchronous Updates
ACM Interational Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), 2023
Efstathia Soufleri
Gang Yan
Maroun Touma
Jian Li
178
6
0
11 Jun 2023
Improved Stability and Generalization Guarantees of the Decentralized SGD Algorithm
International Conference on Machine Learning (ICML), 2023
B. L. Bars
A. Bellet
Marc Tommasi
Kevin Scaman
Giovanni Neglia
288
8
0
05 Jun 2023
Homogenizing Non-IID datasets via In-Distribution Knowledge Distillation for Decentralized Learning
Deepak Ravikumar
Gobinda Saha
Sai Aparna Aketi
Kaushik Roy
204
5
0
09 Apr 2023
Beyond spectral gap (extended): The role of the topology in decentralized learning
Thijs Vogels
Aymeric Dieuleveut
Martin Jaggi
182
4
0
05 Jan 2023
Personalized Decentralized Multi-Task Learning Over Dynamic Communication Graphs
Annual Conference on Information Sciences and Systems (CISS), 2022
Matin Mortaheb
S. Ulukus
FedML
107
2
0
21 Dec 2022
Addressing Data Heterogeneity in Decentralized Learning via Topological Pre-processing
Waqwoya Abebe
Ali Jannesari
205
0
0
16 Dec 2022
Straggler-Resilient Differentially-Private Decentralized Learning
Information Theory Workshop (ITW), 2022
Yauhen Yakimenka
Chung-Wei Weng
Hsuan-Yin Lin
E. Rosnes
J. Kliewer
375
7
0
06 Dec 2022
Aggregation in the Mirror Space (AIMS): Fast, Accurate Distributed Machine Learning in Military Settings
IEEE Military Communications Conference (MILCOM), 2022
Ryan Yang
Haizhou Du
Andre Wibisono
Patrick Baker
106
1
0
28 Oct 2022
Beyond spectral gap: The role of the topology in decentralized learning
Neural Information Processing Systems (NeurIPS), 2022
Thijs Vogels
Aymeric Dieuleveut
Martin Jaggi
FedML
151
38
0
07 Jun 2022
Data-heterogeneity-aware Mixing for Decentralized Learning
Yatin Dandi
Anastasia Koloskova
Martin Jaggi
Sebastian U. Stich
182
20
0
13 Apr 2022
Refined Convergence and Topology Learning for Decentralized SGD with Heterogeneous Data
International Conference on Artificial Intelligence and Statistics (AISTATS), 2022
B. L. Bars
A. Bellet
Marc Tommasi
Erick Lavoie
Anne-Marie Kermarrec
FedML
243
34
0
09 Apr 2022
Achieving Efficient Distributed Machine Learning Using a Novel Non-Linear Class of Aggregation Functions
Haizhou Du
Ryan Yang
Yijian Chen
Qiao Xiang
Andre Wibisono
Wei Huang
179
0
0
29 Jan 2022
Edge Artificial Intelligence for 6G: Vision, Enabling Technologies, and Applications
Khaled B. Letaief
Yuanming Shi
Jianmin Lu
Jianhua Lu
240
511
0
24 Nov 2021
Federated Multi-Task Learning under a Mixture of Distributions
Neural Information Processing Systems (NeurIPS), 2021
Othmane Marfoq
Giovanni Neglia
A. Bellet
Laetitia Kameni
Richard Vidal
FedML
341
339
0
23 Aug 2021
Efficient and Less Centralized Federated Learning
Li Chou
Zichang Liu
Zhuang Wang
Anshumali Shrivastava
FedML
90
18
0
11 Jun 2021
D-Cliques: Compensating for Data Heterogeneity with Topology in Decentralized Federated Learning
IEEE International Symposium on Reliable Distributed Systems (SRDS), 2021
A. Bellet
Anne-Marie Kermarrec
Erick Lavoie
FedML
384
29
0
15 Apr 2021
Consensus Control for Decentralized Deep Learning
International Conference on Machine Learning (ICML), 2021
Lingjing Kong
Tao Lin
Anastasia Koloskova
Martin Jaggi
Sebastian U. Stich
183
89
0
09 Feb 2021
Quasi-Global Momentum: Accelerating Decentralized Deep Learning on Heterogeneous Data
International Conference on Machine Learning (ICML), 2021
Tao Lin
Sai Praneeth Karimireddy
Sebastian U. Stich
Martin Jaggi
FedML
216
106
0
09 Feb 2021
Privacy Amplification by Decentralization
International Conference on Artificial Intelligence and Statistics (AISTATS), 2020
Edwige Cyffers
A. Bellet
FedML
407
45
0
09 Dec 2020
Throughput-Optimal Topology Design for Cross-Silo Federated Learning
Neural Information Processing Systems (NeurIPS), 2020
Othmane Marfoq
Chuan Xu
Giovanni Neglia
Richard Vidal
FedML
262
104
0
23 Oct 2020
Dynamic backup workers for parallel machine learning
Chuan Xu
Giovanni Neglia
Nicola Sebastianelli
236
11
0
30 Apr 2020
Advances and Open Problems in Federated Learning
Peter Kairouz
H. B. McMahan
Brendan Avent
A. Bellet
M. Bennis
...
Zheng Xu
Qiang Yang
Felix X. Yu
Han Yu
Sen Zhao
FedML
AI4CE
503
7,300
0
10 Dec 2019
1